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Hodkowski, Nicola M (Ph.D., Education and Human Development) 
 
Manifestations of Elementary Mathematics Teachers’ Shift Towards Second-Order Models 
 
Thesis directed by Professor Ron Tzur. 
 

ABSTRACT 

This study examined a shift in teachers’ explanations of their students’ mathematical 

reasoning, from being based primarily on the teachers’ own mathematical knowing (first-order 

model, abbreviated FOM) to also attributing mathematical knowing that differs from that of the 

teacher (second-order model, abbreviated SOM, Steffe, 2000). In particular, the following two 

research questions were addressed:  

(1) What changes can be noticed in elementary teachers’ explanations of their students’ 

mathematical activity as teachers shift from mostly relying on their first-order model to 

teach mathematics? 

(2) What may be manifested in elementary mathematics teachers’ work and explanations, as 

they shift from using only first-order models towards differentiating between their first-

order model and students’ mathematical reasoning?  

Results indicated four manifestations of teachers’ shift towards SOM: (a) Juxtaposition of 

Thinking, which refers to the teacher’s experience of contrast between what she or he believes 

the mathematics to be and what the teacher interprets as the students’ reasoning; (b) Cogitation, 

which refers to a teacher’s deepening ability to think about students’ mathematical reasoning; (c) 

Distinction, which refers to a teacher’s enhanced ability to depict student mathematical 

reasoning, and (d) Mindfulness, which refers to a teacher’s growing intention to use 

interpretations of students’ reasoning to facilitate instruction. I discuss important implications of 

the four manifestations for fostering a shift in teachers’ perspective on knowing and learning 
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(Simon, Tzur, Heinz, & Kinzel, 2004) and Student-Adaptive Pedagogy (Steffe, 1990; Tzur, 

2013), additional facets of what has been termed SOM, and similarities and differences in 

researchers’ SOM versus teachers’ shift towards SOM.  

The form and content of this abstract are approved. I recommend its publication. 

Approved: Ron Tzur 
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CHAPTER I 

CONCEPTUAL FRAMEWORK 

 

Human knowledge is essentially active. To know is to assimilate reality into 
systems of transformations. I find myself opposed to the view of knowledge as a 
copy, a passive copy of reality (Piaget, 1970, p. 15). 
 

My research purpose was to examine the process of change in elementary school 

mathematics teachers as they make a shift to an instructional approach that includes using a 

second-order model (Steffe, 1995, 2000)1 of their students’ mathematical thinking. A second-

order model (SOM), also referred to as a model of someone else’s mathematical reality (Steffe, 

2000), consists of inferences an observer—a teacher and/or researcher—makes of a student’s 

mathematical understanding based on observed behaviors (Steffe & Thompson, 2000; 

Thompson, 2000; Ulrich, Tillema, Hackenberg, & Norton, 2014). The word observer refers to 

the person interpreting someone else’s mathematical activity, be it a researcher or a teacher 

(Maturana & Varela, 1980).   

An SOM differs markedly from the observer’s own mathematics, to which Steffe referred 

as one’s first-order model (FOM). Often, teachers conceive of their students’ mathematics 

through the lens of their own FOM (Tzur, 2010); that is, the teacher understands a mathematical 

concept in a particular way and interprets students’ mathematics by using her FOM. Such a 

teacher likely assumes that, through instruction, students will come to understand mathematical 

concepts the same way the teacher does (Simon, Tzur, Heinz, & Kinzel, 2000). Thus, the teacher 

                                                
1 Because expressing the research problem of this study requires articulating key constructs of 
the conceptual framework that underlie formulating this problem, it is presented in Chapter II. 
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uses instructional techniques driven by her FOM understanding of mathematics. At issue is that 

FOM, while making complete sense for the teacher, may be insufficient for fostering student 

learning of the intended mathematics (Steffe, 2000). 

To convey the importance of teachers’ shift towards an SOM, in this chapter, I define and 

illustrate SOM and FOM and outline key components necessary for one to operate with an SOM. 

Beginning with how learning occurs, I use a constructivist framework to describe how a learner 

may advance from not knowing to knowing a new mathematical concept. I then use this 

conceptual framework to highlight advantages for using both FOM and SOM in teaching as 

opposed to just FOM. My goal is to highlight the importance of studying teacher shift towards 

SOM. I explicate the theoretical underpinnings in the literature about SOM and provide 

examples of SOMs. I then discuss in detail two elements of the conceptual framework that 

underlie the study of teacher shift towards SOM: (a) a teacher’s perspective on knowing and 

learning and (b) a Student-Adaptive Pedagogy approach that corresponds to one of those 

perspectives. Finally, I present the research questions for this study.  

To further explain the importance of SOMs for teaching mathematics in ways that foster 

learners’ conceptual learning, I turn to articulating key constructs of the constructivist framework 

that guide this dissertation study. I begin by depicting learning as a cognitive process by which 

learners come to know what previously has been unknown to them. 

The Learning Process 

Cognitive change. I conceive of learning as an active cognitive change process rooted in 

a learner’s experience. This stance is rooted in a constructivist perspective (Piaget, 1985; Simon, 

1995; Simon, Tzur, Heinz, & Kinzel, 2004; Steffe, 1995, 2010; Tzur, 2014; von Glasersfeld, 

1995). According to this perspective, the mathematical understanding an individual has cannot 
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be assumed to “mirror” reality, nor be equated with her observable behaviors (actions and/or 

language, including explanations provided by observed subjects). Rather, one’s understandings 

can only be inferred from observable behaviors. My study builds on Piaget’s (1971, 1985, 2001) 

explanation of the process of knowledge construction and how the human mind moves from not 

knowing to knowing a concept. Von Galsersfeld (1995) later built on Piaget’s theory and 

provided substantial literature postulating how cognitive changes occur.  

Von Glasersfeld (1995) asserted that Piaget’s goal was to create a coherent model of 

human cognition and its development. In that model, learning is conceived of as an internal 

activity of the human mind. As the mind organizes one’s experiences of the world, it is 

simultaneously organizing itself through shaping and coordinating three-part schemes of action 

and operation (Piaget, 1985; von Glasersfeld, 1995). Next, I elaborate on the notion of scheme, 

which constitutes a central construct about knowing, and thus of what can be used to articulate 

first- and second-order models. 

Scheme. What constitutes available/new knowledge, and what is changing when learning 

takes place, are mental structures called schemes (Piaget, 1967; von Glasersfeld, 1995). 

According to von Glasersfeld (1995), schemes consist of three parts: recognition of a situation 

that leads to a goal set by the cognizing subject, activity to accomplish that goal, and a result (or 

expected outcome). The first part of the scheme involves recognition of a certain situation, to 

which Steffe (2002) referred as a “recognition template”. Existing schemes provide the starting 

point of learning, which occur through mentally reorganizing the existing schemes at a higher 

level. Learners’ mental systems are capable of assimilating2 ongoing experiences into the 

recognition template of available schemes, which in turn may bring forth the scheme’s activity. 

                                                
2 I further discuss assimilation in section: Assimilation. 
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For example, if a learner has available a counting-on scheme for adding two given numerosities, 

she could recognize a situation that involves adding 8+7 as one that calls for adding, to the first 

addend taken as is, singletons (1s) that constitute the second addend. 

The second part of a scheme is a mental activity brought forth to accomplish the goal set 

out by the scheme’s recognition template. In the example above, the goal would be to find the 

total of 1s in the combined collection, and the activity could be counting 1s while starting at one 

addend, not at 1 (e.g., 8; 9-10-11-12-13-14-15). This scheme also includes anticipating the need 

to actively keep track of accrual of 1s so she can stop the count after all 1s of the second addend 

are added (e.g., raising all five fingers on one hand and two fingers on the other) (Risley, 2016; 

Tzur & Lambert, 2011). Throughout this dissertation study, I use the term activity in reference to 

the internal, mental activity required to accomplish one’s goal as set by the recognition template 

of her scheme(s) (Simon et al., 2004; Simon & Tzur, 2004; von Glaseresfeld, 1995). As mental 

activities may be accompanied by an observable action (behavior), such behaviors allow an 

observer to infer the internal activity and thus create an SOM of the other person’s mathematics. 

The third part of a scheme is a result the mental system anticipates will ensue from the 

activity. Based on previous “like” experiences, the learner can eventually predict this result 

without running the activity (Simon, 2015; Simon et al., 2010). Continuing the example, the 

learner would arrive at 15 singletons and understand that this is the resulting combination of both 

8 and 7. If asked to explain how she arrived at that answer, she would likely call upon and 

express the counting-on strategy. 

It is important to note that a scheme can be available to a learner as is, as well as be able 

to undergo changes, which would constitute learning. If a situation has previously been 

experienced by the learner and is similar enough in the outcome, the learner is likely to use 
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available schemes, and those available schemes are unlikely to change (Steffe & Olive, 2010). 

On the contrary, if a situation has not been experienced by the learner, she may call on available 

schemes and, due to the gap between previous and current situations, potentially alter the 

existing schemes to create an outcome of new learning. I further discuss this change process in 

the following section on the Reorganization Hypothesis. 

In summary, a scheme is a threefold mental structure that can indicate available knowing 

and can undergo transformation (reorganization), that is, learning (von Glasersfeld, 1995). In the 

remainder of this chapter, the term scheme will always be referred to as a foundational 

conceptual structure capable of changing and therefore part of a learning process. I will use the 

terms available scheme, assimilatory scheme3,  and mathematical concept interchangeably to 

refer to available mathematical knowing of a learner. The next section elaborates on how 

learning may occur through reorganization (change) of available schemes.  

Reorganization hypothesis. The change from not knowing to knowing a mathematical 

idea, that is, learning, occurs by reorganizing previously available schemes (Dewey, 1938; 

Piaget, 2001; Steffe, Liss, & Lee, 2014; Steffe & Olive, 2010, Tzur, 2014). Such reorganization 

reflects Dewey’s (1938) principle of continuity: “From this point of view, the principle of 

continuity of experience means that every experience both takes up something from those which 

have gone before and modifies in some way the quality of those which come after” (p. 35). This 

principle stresses that every experience is twofold in nature: it is understood based on previous 

experiences and shapes subsequent experiences. 

                                                
3 Assimilatory scheme (Piaget, 1967, 1985) is further discussed in the Assimilation section of 
this chapter.  
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Piaget (2001) drew on a similar principle, which he termed “Reflective Reorganization.” 

Reorganization in this sense begins with available cognitive structures and proceeds through 

altered/changed cognitive structures. These reorganized cognitive structures constitute learning 

and occur through learners’ reflective processes. The reflective process expands and transforms 

available schemes by way of reconstructing them. 

I contend that both the principle of continuity and reflective reorganization principle 

underlie Steffe and Olive’s (2010) reorganization hypothesis: “a new scheme is constructed by 

using another scheme in a novel way, the new scheme can be regarded as a reorganization of the 

prior scheme” (p. 1). They go on to say, “New schemes can be regarded as reorganizations of the 

preceding schemes because operations of the preceding schemes emerge in a new organization 

and serve a different purpose” (p. 2). In this sense, one learns a new mathematical concept 

through building on an available scheme, and learning something new is thought of as a 

reorganization of what is already known. Piaget (1971, 1985) articulated two interrelated mental 

processes, assimilation and accommodation, which constitute reorganization, to which I turn 

next.  

Assimilation. Assimilation (Piaget, 1971, 1985) refers to a mental process by which 

available schemes organize a person’s experience. The organization is based on existing 

understanding and experiences a learner has. One’s ability to organize and make sense of 

information involves the first part of the scheme: the recognition of the situation. The 

assimilation serves as a lens by which the learner then uses what she knows to proceed through 

the goal setting, running of the activity, and identifying the result. She can only “see” or 

understand the situation through the lens of what she already knows; that is, her assimilatory 

schemes. Assimilation is a learner’s active mental process through which she organizes the 



 7 

experience she is undergoing by coordinating it with previously recorded experiences. The 

information used to organize an experience may be input from the senses or from within the 

mental system (Piaget 1967; Tzur, 2011).  

When encountering a mathematical task, a learner will assimilate the task into what is 

already known; that is, into available schemes to which Piaget (1967, 1985) referred as 

“assimilatory schemes.” In thinking about the previously exampled learner, when presented with 

a task of 8+7, the available scheme into which this task was assimilated, called counting-on, 

involved recognizing two collections of 1s, setting a goal to figure out the total of 1s, starting to 

count at the first addend (8), moving through 7 additional, figural singletons in the observable 

form of seven fingers, and arriving at a result of a known number word standing for the total of 

1s (here, 15). From this perspective, for an experience to be one that promotes learning, a learner 

must first structure a situation by mentally bringing forth previous like-experiences in the 

interpretation of the current experience (Dewey, 1938). This process could be automatic and 

mostly unconscious to the learner (Piaget, 2001, Simon et al., 2004). In this sense, assimilation 

allows a person to construct a new scheme by “bringing forth” and building on previous 

knowledge (Clark, 2005; Jin & Tzur, 2011a, 2011b). 

Accommodation. Accommodation refers to the cognitive change processes through which 

available mathematical concepts may be reorganized into new ones (Piaget, 2001; Simon et al., 

2004). Accommodation is related to von Glasersfeld’s (1995) second and third parts of a scheme: 

the activity and the expected outcome. A learner entering into a situation requiring activity will 

have a prediction of an outcome based on previous “like” experiences (her own assimilation of 

the task at hand) (Simon et al., 2004). If the actual outcome differs from the predicted outcome, a 

perturbation may occur (Piaget, 1985). Tzur (in press) when referring to Skemp’s (1979) 
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articulation of a perturbation described this as, “a person’s experience of a disparity between a 

current state and a goal state” (p. 6). According to this stance, a perturbation is a crucial 

component in commencing the cognitive change process. 

Perturbations can come in two forms, a constraint or a variation in activity, both of which 

require a need for change in a learner’s predicted outcome. A constraint perturbation (Piaget, 

1985) may occur if the learner is unable to achieve her predicted outcome. For example, a learner 

who tries to add 8+7 and is used to only counting-on with fingers (5) of one hand would sense a 

perturbation in that she cannot complete her counting activity to add the last two 1s.  

Alternatively, a variation perturbation may occur if actual outcomes differ from 

expected/predicted outcomes of available schemes. In thinking about the exampled learner, once 

she reached the fifth finger of one hand she would pause, and then hold up the two fingers of the 

other hand. In this case, the perturbation is sensed in holding up the additional two fingers, 

something the learner may have not done until presented with the problem of 8+7.  

Recent research has further explained perturbation as part of the learning process. Simon 

et al. (2004) suggested that a perturbation could then lead to dis-equilibration of the cognitive 

system in its current state. In other words, a perturbation is a catalyst for learning (Simon et al., 

2004): “Perturbation is commonly understood as cognitive conflict, that is, learners’ experiences 

of an event not fitting with their current conceptions or lack of fit among the conceptions they 

hold” (p. 307). This imbalance or disequilibrium occurs because the prediction of outcome made 

by the individual (what the learner predicted and expected as the result) differs from the actual 

outcome of the activity that occurred, thus causing a questioning within the individual (Piaget, 

1985, 2001; Simon et al., 2004; Tzur, in press).  
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In a learner’s effort to reestablish equilibrium after experiencing a perturbation, two 

scenarios seem possible: (a) the individual avoid the perturbation without resolving it, which 

would result in no reorganization of new knowledge, or (b) the individual could resolve the 

perturbation by transforming available schemes (used for previous assimilations) to adapt to her 

new experience (Piaget, 1985). When such a change occurs, it is viewed as an accommodation or 

transformation of knowledge; that is, an internal reorganization of what was known into new 

knowledge. 

 Consequently, a learner’s need to continually restore equilibration, due to the unexpected 

aspects of an experience of perturbation, can bring forth new learning from results the activity 

produces (von Glasersfeld, 1995). In the exampled learner, she would conclude that finding the 

sum of 8+7 could be accomplished by using additional fingers with which to count, which also 

reorganizes her figural representation of numbers larger than 5 (e.g., raising five fingers on one 

hand and the remaining singletons on the other hand). This alteration would be brought forth by 

her ability to take the new, changed activity and connect it into previous experiences by altering 

the predicted outcome, and transfer it into a new experience. A perturbing situation may also 

become unbearable for the learner; in which case, the learner is likely to give up and not take in 

any new knowledge/schemes (Hackenberg, 2010; Piaget, 1985; Steffe & Tzur, 1994; Tzur, 

1996). In this case, the available scheme would be part of what the learner knows and 

understands. The next section discusses how the accommodation of a scheme takes place through 

the mental mechanism of Reflection Abstraction (Piaget, 2001), on which Simon et al. (2004) 

elaborated with their construct of Reflection on Activity-Effect Relationship.  

Reflective abstraction. The reorganization process involves activity, anticipation, and 

reflection. Piaget (2001) asserted that such a reorganization occurs through a process he termed 
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“reflective abstraction.” Reflective abstraction was explained by Piaget (1980) as a two-phase 

process for a learner to construct a more advanced concept by transforming one that already 

exists. First, the projection phase allows a learner to take the goal-directed actions produced by a 

lower-level scheme as an object of reflection for the next, higher level. Second, in the reflection 

phase, the learner reorganizes the objects reflected on into a higher-level concept. Through 

reflective abstraction, a learner comes to also know the logical necessity of mathematical 

relationships (Simon, 2006).  

Piaget (2001) contrasted reflective abstraction with that of empirical abstraction. In 

empirical abstraction, learners associate properties that are perceived. In other words, learners 

pick up on input and output as perceptual properties or patterns of physical objects. For Piaget, 

this was considered a limited source of knowledge. Simon (2006, 2015) broadened the idea of 

empirical abstraction through defining an empirical learning process to also include processes 

not only based on objects or actions. When discussing the empirical learning process, Simon 

(2006) articulated, “Students learn that the pattern exists. The phenomenon that generates the 

pattern may remain a black box to students” (p. 365). (In this quote I have italicized “that” to 

emphasize empirical learning as something that does not focus on knowing why, but just that 

something occurs.) 

Simon et al. (2004) elaborated on Piaget’s notion of reflective abstraction as a person’s 

ability to recognize a difference between what actually happened and what was anticipated to 

happen through an activity, reflect on those differences, begin to recognize patterns in the 

differences, and mentally abstract them as new learning/knowledge (Simon et al., 2004, Tzur & 

Simon, 2004). Simon et al. (2004) termed this mental mechanism, “Reflection on Activity-Effect 

Relationship” (hereafter abbreviated as Ref*AER).  
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Ref*AER articulates how a learner moves from not having to having a scheme by linking 

this change to von Glasersfeld’s (1995) three-part notion of scheme. Within the first part, the 

learner sets her goal(s) based on her assimilation of the task at hand. That is, the learner’s goals 

are based on her available schemes.  

Accordingly, the learner calls on the activities of the available scheme(s) to solve the 

task. As learners go through the activity, they attend to the effects and begin to distinguish 

between positive and negative effects in the sense of actual effects fitting or not with the 

anticipated result, respectively (Simon et al., 2004). In the latter case, learners may make 

adjustments to their activity. Simon et al. (2004) referred to these adjustments as the “effects of 

the activities” (p. 319). It is the learner’s reflection on the effects that allows for available 

schemes to be reorganized into new ones, a process comprised of two types of reflection (Tzur, 

2011).  

A learner’s comparison between the anticipated effect of the activity and the actual effect 

is termed “Reflection Type I” (Tzur 2011). Reflection Type I supports the cognitive change 

when a learner experiences a perturbation between the anticipated effect of the activity and the 

actual effect. This, in turn, leads to a new (to the learner) activity-effect dyad.  

A second type of reflection that constitutes the Ref*AER mechanism allows the learner 

to compare among newly linked, yet provisional, records of experience (activity-effect dyads). 

This Reflection Type II (Tzur 2011) involves the learner comparing across similar instances of 

using the scheme and abstracting what in those instances seem to have remained unchanged 

(invariant across various situations). The learner begins to cement a new link between the 

activity-effect relationship (dyad) and situations in which they are used by comparing across 

mental records of available schemes, comparing the negative and positive results, and 
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accommodating those into a new scheme. That is, a Reflection Type II process may result in 

linking the new “dyad” to a situation that brought it forth and could thus be brought forth in 

future experiences. Abstracting the new activity-effect dyad, and linking it anew to a recognition 

template, constitutes the reorganization of available schemes into a new one; that is, an 

accommodation of previous into a new mathematical concept.  

The mechanism of Ref*AER underlies learners advance from not knowing to knowing 

(Tzur, 2011; Tzur & Lambert, 2001). Through Ref*AER, the learner establishes her anticipation 

of the invariant relationship between the mental/predicted activity and its effect. Reflection Type 

I allows learners to notice a difference between what was anticipated and the actual effect. 

Reflection Type II allows a learner to compare anticipation of activity-effect dyads across 

previous, similar situations. As learners create new schemes by reorganizing available schemes 

through the two-type reflective mechanism, two stages in a learner’s construction of a new 

scheme may be observed: participatory and anticipatory (Tzur & Simon, 2004). These two 

stages, to which I turn next, seem to be critical components for teachers to include in their SOM.  

In the process of reorganizing a new scheme from available ones, the participatory stage 

may be observed. The participatory stage (Simon, Placa, & Avitzur, 2016; Tzur & Simon, 2004) 

is inferred when a learner is not yet able to solve a task spontaneously and independently; that is, 

the learner can engage in a particular activity, can develop knowledge of a mathematical concept, 

and can anticipate an expected effect. However, when presented with other tasks requiring the 

same mathematical concept, the learner can anticipate the effect only after somehow being 

prompted (e.g., through interacting with a teacher) for the activity that leads to that result. 

Alternatively, the participatory stage may be inferred when a learner, in the process of solving 

the mathematical problem, has recognized her own mistake (of anticipation) and corrected it 
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through what she, and an observer, may identify as the “oops” experience. Whether the prompts 

are external or internal, in the participatory stage, they are necessary for the learner to solve the 

mathematical task at hand. At the participatory stage, both the recognition of a situation and the 

goal-directed activity exist, but anticipation of the effect cannot occur independently.  

Tzur & Lambert (2001) have linked this mental stage in the construction of a new scheme 

to Vygotsky’s (1986) notion of Zone of Proximal Development (ZPD). Their reason was that at 

the participatory stage, the scheme is not yet fully constructed and not available upon 

assimilation (Vygotsky’s Zone of Actual Development). The reason for this lack of access to the 

new scheme is that the activity-effect dyad has yet to be integrated with the situation of the 

scheme. 

Unlike at the participatory stage, at the anticipatory stage (Simon, Placa, & Avitzur, 

2016; Tzur & Simon, 2004) the learner can spontaneously and independently anticipate and 

justify the link between an activity and its effects. Having explained the learning of new 

mathematics as a cognitive process of reorganization, rooted in two types of reflection and 

consisting of two stages, in the next section, I turn to defining an SOM and connecting it with a 

teacher’s ability to operate with an SOM.  

Second-Order Models: Knowing and Learning Must Be Inferred 

Defining learning as the internal cognitive change process the human mental system may 

undergo entails that knowing and coming to know can at best be inferred by an observer (Cobb 

& Steffe, 1983; Maturana & Varela, 1980; Steffe, 1992, 1995). The complexities of this internal 

reorganization process cannot be understood as parallel to or directly “mirroring” observed 

behaviors (Cobb & Steffe, 1983; Steffe, 1995). Rather, those mental processes must be modeled 

through interpreting the learner’s actions and explanations.  
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Inferences about other people’s available schemes and changing schemes constitute 

SOMs. An SOM is a set of inferences an observer may make about a learner’s mathematical 

thinking and activity (Steffe, 1995). Specifically, SOMs are “hypothetical models observers may 

construct of the subject’s knowledge in order to explain their observations (i.e. their experience) 

of the subject’s states and activities” (Steffe, 1995, p. 495). SOMs differ from FOMs in that, with 

FOMs, the observer’s interpretations are essentially attributing mathematical knowing to the 

learner being observed through only the lens of the mathematics used by the observer herself. 

The observed learner may be considered to have or not to have a concept, but such an attribution, 

with the frequent reference to “not having” as “misconception,” is likely rooted in the observer’s 

contrasting of the other person’s mathematics through assimilating it into one’s own FOM.  

It should be noted that all observers operate with an FOM (Steffe, 1995). Recognizing 

that learning is an internal process and cannot be directly accessed entails contrasting FOMs with 

SOM of another person’s ways of knowing (schemes). By definition, the ability to create an 

SOM of another person (e.g., a student) is always subjective and based on the observer’s own 

subject knowledge (Steffe, 1995): “Second-order models are understood as springing from the 

conceptual operations that are available to the observer, along with their modifications in the 

context of interacting [with the observed person]” (p. 496).  

To shift to SOM, observers must begin to distinguish between their mathematics and 

inferences into (analysis of) the learner’s mathematics (Steffe, 1992). Having an SOM allows an 

observer to better understand a learner as a self-organizing system: someone who has unique 

ways of operating that are different from one’s own (Steffe, 1992). With this gained ability, 

instructional focus may shift from an effort of transmitting, or “showing” to learners, 

mathematical aspects of one’s FOM (existing mathematical knowledge) – to fostering learners’ 
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construction of their own mathematical, mental operations. That is, constructing an SOM allows 

an observer to take on a perspective of others’ mathematical ways of operating (Steffe, 1995; 

Ulrich et al., 2014). 

In shifting to an SOM, a person needs to recognize that (a) her FOM is not the same as 

the learners’ mathematics; (b) behaviors in and of themselves do not constitute the learner’s 

mathematics; and (c) when interpreting with an SOM, it is precisely that: an inference into 

another person’s mathematical thinking (not a piece of objective reality). Without such 

inferences, intentional support for the reorganization process to take place is not likely to happen 

(or, at best, if it did, there’s no way for the observer to explain why, let alone change the teaching 

if it did not). Before finalizing my discussion of SOM, I turn to discussing the importance of 

SOMs in teaching mathematics. 

Second-order models in teaching mathematics. To promote others’ learning of 

mathematics (i.e., reorganization in their schemes), it seems crucial for a teacher to develop 

appreciation for and facility with creating SOM (Tzur, 2014; Ulrich et al., 2014). This stance is 

rooted in the understanding of learning as a process that begins by assimilation into available 

schemes, which can only be inferred. Considering the learning process outlined thus far, to 

promote learning of a new mathematical concept, I provide my summary of what an observer 

should become accustomed to doing based on the existing literature discussed: 

a)� Infer what a learner’s existing understanding is by distinguishing the learner’s 

assimilatory schemes from the teacher’s own understanding. 

b)� Predict what effects a learner might anticipate from an activity based on the learner’s 

existing understanding. 

c)� Capitalize on the expected learner’s assimilation of what is known (available schemes). 
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d)� Implement tasks wherein learners notice intended effects that are slightly different than 

what they anticipated in the first place in order to foster Reflection Type I that can begin 

an accommodation/transformation process. 

e)� Recognize the differences in what the learner expected to happen and what actually 

happened (new effects for the learner). 

f)� Use the new effects (for the learner) to orient the learner in Reflection Type II to shift the 

learner’s anticipation into a new, transformed, understanding.  

g)� Determine the extent to which a learner can anticipate an outcome at a participatory or 

anticipatory stage and use that, in turn, to determine to what extent a new assimilatory 

scheme has been learned. 

Shifting towards an instructional approach that includes an SOM underscores the first 

part of the learning process as explained above: inferring the available schemes a learner already 

has constructed, participatory and/or anticipatory, while clearly distinguishing those from the 

teacher’s own understanding and assimilatory schemes (her FOM). Once a learner’s existing 

available schemes are inferred, hypotheses can be articulated as to how learning can progress 

through accommodation (Simon, 1995; Simon & Tzur 2004). Thus, for an SOM to be used, a 

teacher needs to develop the ability to infer a student’s existing understanding of the 

mathematics and distinguish that understanding from the teacher’s own mathematical 

understanding. As Tzur (2010) succinctly pointed out, “The assimilation principle requires 

teachers to understand students’ mathematics as qualitatively different from the teachers’ 

understanding and, thus, as the conceptual force that constrains and affords the mathematics 

students can “see” in the world” (p. 50). Shifting towards an SOM can allow a teacher to 
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understand that when learners learn mathematics, they are creating their own experiential reality, 

which may or may not be compatible with that of the teacher’s (Ulrich et al., 2014). 

Specifically, while using the Ref*AER model for cognitive change through two types of 

reflection, SOMs seem needed for teachers to foster perturbations that may lead to learning. A 

teacher who uses SOM can intentionally and successfully also orient reflections to foster 

students’ transition to the participatory stage, and then to the anticipatory stage. A teacher who 

shifts towards an SOM can better orient a child’s reflection leading to the intended cognitive 

change, because she can pinpoint, and link, available schemes and those that need to be 

developed. To this end, SOMs would include articulation of possible gaps students may 

experience between the anticipated effect and actual effects (Reflection Type I). Similarly, 

SOMs are important for fostering the comparison across instances of using invariant activity-

effect relationships (Reflection Type II). Subsequently, having an SOM would also allow a 

teacher to choose tasks that may both bring forth known mathematics through assimilation and 

lead to transforming that mathematics through the two types of reflection.  

A teacher who promotes learning through using an SOM can also infer (and assess) to 

what extent students have learned a particular way of thinking mathematically. In particular, a 

teacher can use her SOM of a student to determine if a student is at a participatory or anticipatory 

stage of constructing a new scheme as a way to determine what mathematical goals for learning 

the teacher should have for the student next. This is important, because if a student has only a 

participatory stage of a new scheme, a teacher’s SOM could imply the student has yet to 

establish a new scheme. This would allow a teacher to further work with the learner to move 

along the reorganization process so that the new scheme would become anticipatory. In addition, 

a teacher with SOM could also determine if a student had constructed a particular scheme at an 
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anticipatory stage, then be able to use this new learning as a new available (anticipatory) scheme. 

In short, SOMs provide the teacher with a tool for creating new learning situations that can 

advance the learner’s mathematics to more advanced schemes (or stages).  

All people, including researchers and teachers, when observing a learner, use their FOM 

to assimilate the other person’s mathematics (Steffe, 1995). An ability to shift towards an SOM 

means that an observer (e.g., teacher) is adding an awareness of the need to infer what could a 

learner’s experience with mathematics be and distinguish what she infers from her own 

understanding of the mathematics. Shifting towards an SOM increases the likelihood a teacher 

can foster students’ bringing forth, through assimilation, relevant available schemes they already 

have and transforming those into the intended mathematics.  

In contrast, a teacher who is operating only from her own FOM would, at best, set 

developmentally appropriate goals for students’ learning. Additionally, a teacher operating from 

an FOM may not make an inference into differences in student conceptions from her own, as it 

could be assumed that the understanding of the learner has, essentially, either already reached a 

stage of being the same as the teacher’s, or “not yet there” (often referred to as the learner’s 

“misconception”). An SOM allows inference into the current understanding a learner has, which 

then allows for understanding of assimilatory schemes that could be triggered within the student, 

thus, situating a learning opportunity based on what the learner already knows.  

The next section presents examples that can illustrate and clarify development and 

important differences in teaching for conceptual change between those who use only FOM and 

those who use both FOM and SOM. To this end, I first articulate a person’s initial operation on 

FOM and then move towards understanding/interpreting an SOM of another person, by 

providing a real life example of one partaking in a book club. This example is meant to illustrate 



 19 

how one might initially recognize that her and others’ mathematics differ. This recognition can 

constitute the beginning of developing an SOM (Cobb & Steffe, 1983; Steffe, 1992, 1995). Later 

in this chapter, a more detailed example of how SOM can be used for conceptual change is 

provided as it pertains to learning mathematics.  

Illustrating a shift towards a second-order model. In a book club, people read a book 

or certain parts of a book on their own and then get together with other members to discuss what 

they read. When a reader reads independently, she creates and interprets her own reality of the 

book and its themes, main ideas, characters and their traits. This is the reader’s FOM of what is 

going on within the context of the story as she makes sense of the book and as the story unfolds. 

At this point, the reader only has her own experience with the literature, and therefore, this 

experience serves as a guide for how the reader assumes the experience and interpretation of the 

story may be for others reading the same book. That is, until members meet to discuss the book 

and the reader has an opportunity to hear others’ interpretations, she can only interpret what she 

read using her FOM. Once such an opportunity occurs, particularly if another reader interpreted 

it differently, the reader may experience a perturbation and react in one of three ways. First, the 

first reader may try to persuade the other person of her own understanding. For this, she may use 

specific examples from the story to share her interpretations and try to impart her interpretations 

onto the other person as a way for them to understand the theme similarly. In doing so, the reader 

is continuing to operate from her FOM, while trying to have the other person interpret the 

passage at issue in the same way as the reader’s FOM. Second, she may resolve the perturbation 

by being persuaded with the other reader’s interpretation and change her own FOM accordingly. 

It should be noted that, in both cases, her interpretations (original or transformed) are rooted in 

her FOM. 
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A third resolution to her perturbation between her original FOM understanding of the 

book and the other’s interpretation could be to consider two possible frames of mind. This could 

thus become an initial shift in the reader’s operation from her FOM to also include an SOM by 

attempting to understand another’s FOM of the literature. This may provoke questions for the 

other reader, such as, “Why do you think that?” or “How did that develop for you throughout the 

story?” It is then possible the first reader will start trying to infer into the other person’s 

understanding to better interpret what underlies the different understanding. When this occurs, 

the first reader may be attempting to make sense of another person’s model, which could lead to 

an SOM of the other person’s experience. It is important to note that it was not until the other 

person shared her understanding of the story, and the first reader listened to it and noticed the 

difference, that she could realize her FOM was different. That is, through interactions with other 

people, the reader may recognize her interpretation as idiosyncratic, while others could likely 

have different understandings.  

Considering this scenario through the lens of assimilation, when the first reader was 

reading the book on her own, there was one reality for the reader’s interpretation and 

understanding of the theme. This would often be the reader’s default position until there was a 

contrast of another person’s experience with the book. Both the reader and the other person 

experienced the book as a function of what they knew and their previous experiences, which led 

to different interpretations; that is, assimilation of the book’s theme was unique to each reader. 

Thus, a reader’s reality of the theme persisted at least until her interpretation of the book and of 

the other person’s interpretation conflicted in her mind. Once confronted with a different 

interpretation, it might have been difficult, initially, to understand how the other person came up 

with her interpretation. Hence, the first reader’s attempt to try to make the other interpret the 
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theme the way she did made sense to her, as well as to someone (e.g., book club leader) who 

considers a need for the first reader to accept other readers’ interpretations. The two ways in 

which two different readers assimilated the “same story” were at odds until a perturbation was 

created for the first reader through (a) interacting and sharing interpretations and (b) recognizing 

differences in these interpretations.  

It is important to note that the book club example helps illustrate the issue of FOM and 

SOM in a domain and human experience in which most people would expect different 

interpretations from others. The issue becomes more complex in mathematics, because most 

people seem to accept it as a single body of knowledge available identically to all (Cobb & 

Steffe, 1983; Ernest, 1989; Steffe, 1995). Next, I turn to an example that illustrates the issue of 

FOM and SOM in mathematics. 

Mathematical example of a second-order model. To convey the importance of SOM 

versus FOM within mathematics education, I now provide an example of two learners embarking 

on multiplicative reasoning. I portray these two learners in their journey of learning as depicted 

by one teacher operating from an FOM and another operating from both an FOM and an SOM. 

My purpose for providing this example is threefold. First, it helps emphasize the difference 

between such teachers in terms of what a child can assimilate and use as a springboard for 

further learning. Second, it provides a contrast between understanding of a student’s 

mathematical reality a teacher can attain from operating from an FOM (e.g., the first two ways of 

the book reader’s resolution to her perturbation) versus a teacher operating from an FOM and an 

SOM (the third way of resolving the book reader’s perturbation). Third, it emphasizes the 

mathematical understanding that a teacher can promote in her students when operating only with 

an FOM versus with both an FOM and an SOM. Thinking about these two examples of different 



 22 

learners, I will then describe how such teachers may differ in their interpretations of each 

student’s thinking. In doing so, my goal is to underscore the advantage educators may gain when 

shifting to an SOM along with their FOM.  

For the example, consider two students who both solved the following multiplication 

problem correctly, arriving at 20 pieces of gum: “You have 5 packs of gum; each pack has 4 

pieces of gum. How many pieces of gum do you have in all?” Learner A solved the problem by 

holding up five fingers and counting by four for each finger arriving at the total of 20 pieces of 

gum (e.g., 4-8-12-16-20). Learner A then explained, “I used my fingers to represent each pack of 

gum and counted each of the pieces of gum. I knew to stop at my fifth finger because that was 

the last pack of gum.” On the other hand, Learner B explained, “I drew five boxes and then four 

dots in each. I then counted all the dots, like this: 1-2-3-4; 5-6-7-8; 9-10-11-12; 13-14-15-16; 17-

18-19-20. So, 20 pieces of gum.”  

One example of a teacher operating only from an FOM is that she would determine both 

learners understand multiplication because they both arrived at the correct answer of 20 pieces of 

gum. In addition, a teacher operating from an FOM may also think of Learner A as being more 

advanced than Learner B due to the solution of skip counting versus counting dots. In both cases, 

as this teacher is relying heavily on her FOM, both learners can solve correctly multiplicative 

situations. Yet, this teacher’s FOM seems to underlie her interpretations of both learners’ 

solutions as having the concept like she does. Therefore, this teacher is unlikely to recognize, and 

distinguish, the assimilatory schemes that each learner used to arrive at the solution and use this 

as a basis for what the learner can and should learn next.  

On the other hand, a teacher operating from an SOM and an FOM is likely to interpret the 

work of the two learners as conceptually different from one another – and from the teacher’s own 
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frame of reference. A teacher using an SOM may infer that Learner A can assimilate a situation 

into a multiplicative scheme with figural items (use of fingers), and thus distribute units of four 

pieces of gum into each of the 5 packs. In this sense, the teacher may attribute to Learner A the 

multiplicative double counting (mDC) scheme (Tzur et al., 2013). This scheme includes 

purposely keeping track of and coordinating accrual of both the composite units (5 packs) and 

the unit rate of pieces of gum (4 pieces in each pack) to arrive at the total amount of single 

pieces.  

Similarly, using an SOM, the teacher would also interpret Learner B to have a different 

scheme. From Learner B’s actions, the teacher may infer that she assimilated the task into a 

scheme in which units of 1 are being distributed—not composite units. Accordingly, a teacher 

operating with an SOM would select different learning goals for each learner, as well as select 

tasks to foster their mathematical progress (e.g., foster Learner A’s abstract operations in 

multiplicative situations and Learner B’s strengthening of her conception of number as 

composite unit).  

This teacher’s ability to create an SOM, including differentiating between her scheme of 

multiplication with abstract objects (numbers) and Learner A’s use of figural objects (fingers) 

underlies her different inferences into each learner’s assimilatory schemes. Thus, the teacher 

could differentiate her instruction to promote progress in both learners.  

Types of second-order models. I now present an overview of types of SOMs that 

researchers may create. Ulrich et al. (2014) postulated three types of SOMs to be beneficial for 

teaching: Emerging, Developed, and Elaborated. In the Emerging SOM, researchers could 

understand and have insight into students’ mathematical thinking. In such a stage, instructional 

adaptations do not necessarily occur because the model is either still being constructed or not 
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quite accurate.  

The Developed SOM builds on the Emerging Type in that it uses the student’s 

mathematical understanding to anticipate and plan interactions with students. At this stage 

appropriate tasks can be used that fit with the student’s way of thinking in order to promote 

further learning. 

Model is based on interactions with one student to show how this can be used to 

anticipate an effective sequencing of tasks to engender accommodations in students’ 

schemes and can be done efficiently…Using previous SOMs can predict student 

difficulties and reactions to student difficulties and reactions to perturbations with much 

greater accuracy (Ulrich et al., 2014, p. 338).  

In the third type, an Elaborated SOM, the teacher/researcher is able to determine a viable 

understanding of what the student’s existing mathematical understanding is prior to the 

interaction. Consequently, the teacher can plan a whole set of tasks that would allow the student 

to advance in their mathematics. This paves the way for more effective planning that makes 

sense of student interactions and reacts meaningfully by creating what Ulrich et al. (2014) 

connected to the epistemic subject: “Generalization of SOMs to epistemic subjects which enable 

the teacher/researcher to situate student responses in a much broader framework of potential 

student responses and ways of operating” (p. 335). Next, I link the distinction between FOM and 

SOM to perspectives on mathematical knowing, learning, and teaching (Simon et al., 2004). 

Shifting towards Second-Order Model: Perspectives on Knowing, Learning, and Teaching 

In this section, I describe teacher perspectives that have been articulated in existing 

literature (Ernest, 1989; Jin & Tzur, 2011a, 2011b; Simon et al., 2000). Each of these 
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perspectives affords and/or constrains a teacher’s ability to create an SOM of their students. In 

describing each of the perspectives, I outline those affordances or constraints.  

Simon et al. (2000) contended that underlying teachers’ work are certain perspectives on 

knowing and learning into their classrooms of which they may or may not be aware. These 

perspectives are manifested in instruction and impact student learning of mathematics. Like 

Simon et al. (2000), I define one’s pedagogical perspective as not necessarily what teachers do 

within a classroom, but what teachers think about their practice, the motivations behind methods 

they use, and the intentions that drive their instructional moves. Prior research has defined four 

main types of teaching perspectives on learning and knowing: (a) Traditional Perspective 

(Ernest, 1989), (b) Perception-Based Perspective (Simon et al., 2000), (c) Progressive 

Incorporation Perspective (Jin & Tzur, 2011a, 2011b), and (d) Conception-Based Perspective 

(Simon et al., 2000). I further describe each of those perspectives below, to highlight how the 

fourth (CBP) is founded on SOM. 

A Traditional Perspective (TP) (Ernest, 1989) views mathematical knowledge as existing 

outside of the learner’s experience. The view of learning is that it is a result of passive reception, 

so that the learner comes to accept math as it is for every person – a “mirror” of reality. Teaching 

from this perspective is seen as a transmission from one individual to another. Hence, a teacher 

with this perspective teaches mostly through presentation of mathematical information, and she 

expects to “transmit” the universally available mathematical knowledge to the learners.  

A teacher with a TP on learning is likely to operate from an FOM. This teacher uses her 

understanding of the mathematics to convey the same meaning to the learners. This can often be 

observed in the “I do, we do, you do” model of instruction. In this model, the teacher first 

demonstrates how to do the mathematics (I do from an FOM), then provides time for assisted 
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practice of doing what was modeled (we do seen through FOM). Eventually, the teacher lets 

learners do the math on their own (you do, to master what’s in the teacher’s FOM) from the “I 

do” and “we do” and continued “you do” practice. The learners, in turn, either get the 

mathematics as the teacher does, or they do not, and the teacher tries to reteach the mathematics 

using similar methods. It should be noted that the view of mathematics entailed here is one of 

essentially doing, that is, no questioning of the mental processes that may underlie such one’s 

own or others’ doing. 

Second is a Perception-Based Perspective (PBP) (Simon et al. 2000), in which a teacher 

still views mathematics as existing outside and independent of human mental activity. However, 

unlike TP, with PBP learning mathematics is considered an active process that requires some sort 

of hands-on experience so learners can “see,” or “discover,” the mathematics to be learned. 

Accordingly, PBP entails that the mathematics, once discovered by each learner, is the same for 

both the teacher and each learner. Therefore, a teacher with this perspective teaches mathematics 

by promoting students’ active discovery of concepts and eventually explaining through active 

perception/understanding of the explanations (Simon et al., 2000).  

Like a teacher with TP, a teacher with PBP is likely to operate from an FOM. Although 

the means to accomplish students’ understanding differ from TP teachers, a PBP teacher is 

inferred to still focus on getting students to understand the mathematics in the universal way 

everybody understands it (teacher included). This can sometimes be inferred during a “we do, 

you do” lesson, where the teacher introduces an activity for learners to engage in that is based on 

how the teacher understands the mathematics, and possibly came to understand it himself or 

herself. The learners and teacher then go through the activity (we do) until, eventually, the 

teacher removes herself and allows learners to do it on their own (you do). If learners still 
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struggle at the end of the “you do” portion, teachers with PBP are likely to revert back to 

transmitting the mathematics to the learners, perhaps by a learner who the teacher believes got 

the math (Simon et al., 2004). In the teacher’s mind, activity/exploration is necessary to bring 

about the “seeing” (perception) of the mathematics the way the teacher sees it through her FOM. 

Thus, a teacher with PBP may notice a student struggling with the mathematics, but she may 

have no alternative instruction to “fall back on” when students do not see the mathematics.  

Third is a Progressive Incorporation Perspective (PIP) (Jin & Tzur, 2011a, 2011b), in 

which a teacher guides and creates opportunities for students to be active in the learning via 

problem solving to extend known knowledge into new knowledge. Deriving from studies of 

Chinese teaching practices (Jin & Tzur, 2011a, 2011b), PIP takes a dialectical view on knowing 

and learning as being both outside and inside the learner. Importantly, teachers with PIP largely 

operate from an FOM. They use a lesson structure that connects mathematical concepts 

developmentally and aim to promote learning through incorporating the new, intended 

knowledge into what students already know. Specifically, they initiate the new learning by 

bridging tasks, which are geared toward bringing forth students’ available knowledge. They then 

move to variation tasks (of problems, of solutions), which are geared toward gradually 

incorporating the new ideas into the old. The final part of each lesson involves the teacher 

summarizing the learning for the students.  

Unlike PBP, in PIP what students know is considered key to what they can learn. Thus, 

the lesson structure is set to first bring forth what the student understands (bridging) and then 

promote it into new knowledge (variation). At the end of each lesson, when the teacher reverts to 

the role of an explainer of the mathematics, the entire teaching-learning interactions being rooted 

in FOM becomes apparent. 



 28 

Fourth is the Conception-Based Perspective (CBP) (Simon et al., 2000), in which the 

teacher views mathematics is as being created by the learner through the use of existing 

understanding (anticipation), mental activity, and reflection. CBP centers on the notion of 

assimilation: one can only “see” (know, or learn) what one has conceptualized. Accordingly, a 

CBP includes the following three elements outlined by Simon et al. (2000): 

1. Mathematics is created through human activity. Humans have no access to 

mathematics that is independent of their ways of knowing. 

2. What individuals see, understand, and learn is constrained and afforded by what they 

currently know (current conceptions).  

3. Mathematical learning is a process of transformation of one’s knowing and ways of 

acting. By using the term transformation, we mean to indicate that learning involves 

modification of existing ideas, not just the accumulation of additional ideas (p. 583).  

A teacher who adheres to the Conception-Based Perspective acts as a facilitator to their students’ 

learning. The teacher continuously provides opportunities for engaging students in problem 

solving adapted to their existing understanding and orienting reflection on those activities (Tzur, 

2013).   

 Teachers with CBP mostly operate with both an FOM and an SOM, while recognizing 

that their interpretation of the student’s SOM involves the lens of their own FOM. A CBP 

teacher not only understands learning as an active process (like PBP and PIP) but also as 

dependent on what each learner already knows and thus may assimilate, and transform, in any 

learning opportunity. For a teacher with CBP, learning can only occur by learners first 

assimilating and then transforming their available schemes. 
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 It is important to note that it is possible for a teacher to have an SOM and not have CBP. 

A teacher with just an SOM would be able to determine the mathematical operations to which a 

learner has. This teacher would be able to determine what a learner’s conceptions are. However, 

a teacher with the ability to just determine an SOM may not know how to promote learning as a 

cognitive change once she created her SOM. This is demonstrated in Chapter IV of this 

dissertation, for both case study teachers. In contrast, a teacher with a CBP would not only be 

able to determine the SOM of the student but also create a learning path for the student based on 

a Hypothetical Learning Trajectory4 (Simon, 1995; Simon & Tzur, 2004) of how a student may 

accommodate the existing assimilations and reflect on those to create new (to the learner) 

knowledge. That is, an SOM seems necessary but insufficient for CBP; a teacher who can 

construct an SOM may or may not adhere to CBP, whereas a teacher who adheres to CBP 

dynamically strives to create SOMs as a tool for designing instruction. In this sense, studying 

teachers’ shift towards an SOM is important, because it affords teachers a necessary tool for 

moving toward CBP and the corresponding Student-Adaptive Pedagogy approach (Steffe, 1990; 

Tzur, 2013). Next, I turn to describing the Student-Adaptive Pedagogy approach as it further 

accentuates the importance of this study’s contribution to possible shifts towards an SOM5. 

Student-Adaptive Pedagogy 

Drawing on Steffe’s (1990) notion of adaptive teaching, Tzur (2013) introduced the 

notion of Student-Adaptive Pedagogy to depict an approach in which the teacher’s instructional 

moves are designed to advance a learner from her existing (assimilatory) to new mathematical 

schemes. This approach is likely to be observed with teachers who adhere to CBP, although the 

                                                
4 Hypothetical Learning Trajectory is described in the next section. 
5 The importance of Student-Adaptive Pedagogy to this study is further explicated in Chapters II 
and III.  
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two do not always go hand in hand. A Student-Adaptive Pedagogy approach requires teachers 

have an SOM of their students in order to advance mathematical conceptions through 

reorganization of their assimilatory schemes6. Following, I outline key components of the 

Student-Adaptive Pedagogy approach. I then provide articulation as to how these components 

translate to teaching by further defining Student-Adaptive Pedagogy. Finally, I recap the 

importance of SOMs for the Student-Adaptive Pedagogy approach.  

The Student-Adaptive Pedagogy approach is a way of teaching in which the teacher 

tailors instructional moves to learners’ existing mathematical conceptual understanding (Steffe, 

1990; Tzur, 2013). A teacher who adheres to this approach understands the goals set for the 

students’ learning are distinct from the goals that drive the student’s activity. Tzur (2017) has 

defined this approach as follows: 

Student-Adaptive Pedagogy is an approach rooted in a constructivist stance on 

mathematical knowing and learning. It draws on the core constructs of assimilation and 

reorganization (construction). Assimilation entails anything a person (learner) 

experiences is afforded and constrained by her or his available conceptions. Thus, one 

cannot be given new knowledge, but rather has to construct it as reorganization of 

available conceptions. Such reorganization is explained as a reflective process of 

abstraction, which consists of two types of mental comparison and two stages. For 

teaching, this stance on conceptual learning entails a cyclic, reflective process consisting 

of three principal activities: Analyzing (diagnosing) students’ available math conceptions 

that could be reorganized, articulating the math intended for students’ learning as a result 

                                                
6 Student-Adaptive Pedagogy requires that one have an ability to operate using an SOM of their 
learners. However, if one has an ability to operate using an SOM it does not mean that they are 
using the pedagogical approach of Student-Adaptive Pedagogy.  
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of the reorganization, and devising tasks and activities that have the reasoned potential to 

promote the desired reorganization of available into intended conceptions. Those three 

principal activities comprise seven teaching practices (or “steps” in the cycle) teachers 

can develop to enact and understand the Student-Adaptive Pedagogy approach [sic].7 

A crucial facet of the above depiction is that a teacher who adheres to the Student-Adaptive 

Pedagogy approach (hereafter, I shall refer to it as an AdPed teacher) is aware of students’ 

mathematical behavior being rooted in existing schemes a student does have (see, for example, 

Hunt & Tzur, 2017). This recognition occurs through the teacher’s ability to infer into the 

student’s understanding, that is, to create an SOM of the student’s mathematical understanding.  

As a result, an AdPed teacher can identify which mathematical concept the student could and 

should construct next, and how that new concept can evolve through reorganization of the 

existing understanding the student has. 

The Student-Adaptive Pedagogy approach underpinnings have been developed based on 

three main components: (a) the Hypothetical Learning Trajectory (HLT) (Simon, 1995; Simon & 

Tzur, 2004), (b) the seven instructional steps of a teaching cycle (Tzur, 2008), and (c) the 

Teaching Triad (Tzur, 2010). I present, in detail, these three components to further explain the 

underpinnings of the Student-Adaptive Pedagogy approach. These main components are all 

reliant on a teacher’s ability to create an SOM of her students in order to promote further 

mathematical understanding. By further describing each component, I intend to point out the 

importance of studying a shift towards an SOM in teachers.  

Hypothetical learning trajectory (HLT). The HLT (Simon, 1995; Simon & Tzur 2004) 

is a construct that underlies designing instruction based on a constructivist perspective. HLTs 

                                                
7 The mentioned seven teaching practices are outlined in Tzur, 2008.  
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consist of three elements: (a) the goal for student learning that denotes task direction, (b) 

mathematical tasks that promote such learning, and (c) a hypothesis/prediction about how 

student thinking and understanding may evolve throughout the learning activity (Simon & Tzur, 

2004). The HLT is based on an understanding of the student’s acquired mathematical knowledge 

and, thus, is dependent on a teacher’s ability to form an SOM of her students. The HLT is 

modified regularly by the teacher and is used as a vehicle for fostering learners’ understanding of 

the intended mathematical concept(s). In designing an HLT, a teacher would take into 

consideration the mechanism of cognitive change (e.g., Ref*AER) by which learners can 

transform their available concepts.  

Seven instructional steps for teaching. A component of the Student-Adaptive Pedagogy 

approach is a cycle of seven key steps that further explicate the HLT construct. Tzur (2008) 

stated,  

For teaching mathematics students must be engaged in tasks that serve three principle 

functions: (a) fostering assimilation of tasks into their available, relevant conceptions, (b) 

fostering orientation of their focus of attention so that they notice effects of their work on 

the task intended by the teacher, and (c) fostering students’ reflection on a 

distinction/formation of the new, intended conception (p. 140).  

To carry out these three functions as a teacher, Tzur proposed seven steps, which became part of 

the Student-Adaptive Pedagogy approach. I will now briefly describe the first 3 steps, as I see 

them as a support for the rationale of the need to study teachers’ shift towards SOM. (Note: Steps 

4-7 rely on the first three while focusing on other aspects of the teaching-learning process, and 

thus are not discussed here.)  

 The first step within this seven-step cycle is “Specifying Students’ Current Conceptions” 
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(Tzur, 2008, p. 141). It requires one to determine what the learner can assimilate based on what 

is already known to the learner, as what is known affords and constrains what can be 

reorganized. In this first step, a teacher needs to infer the available schemes based on a learner’s 

actions and explanations. Indeed, it requires the teacher to separate those inferences from her 

own understanding and existing schemes (that is, from her FOM).  

The second step is “Specifying the Intended Conception” (Tzur, 2008, p. 141).  This 

involves the teacher decomposing the conceptions learners are expected to learn. As part of this 

process, a teacher connects between what the student has available and how it builds/can be 

reorganized into a new mathematical understanding for the learner. As Tzur (2008) stated, “To 

promote the intended learning effectively the teacher also needs to specify the differences 

between and transformations (shifts in awareness) needed from a current state to an intended 

state” (p. 142). This requires the teacher to have an SOM of her learners. Without an SOM, a 

teacher is unlikely to attend to the effects that a learner would notice from a task designed to 

promote learning through reflection on those effects. 

The third step, “Identifying an Activity Sequence” (Tzur, 2008, p. 142), involves a 

teacher envisioning the mental activity sequence that a learner may go through when she 

assimilates a task. This, essentially, seems compatible with Simon’s (1995) notion of 

hypothesizing how change in the learner’s available mathematics would lead to the intended 

mathematics; that is, articulating an HLT. If unable to create an SOM of a learner’s mathematics, 

one cannot successfully envision a mental activity sequence through which the cognitive change 

might unfold. This claim draws on the premise that, “students construct their understandings, 

they do not absorb the understandings of their teachers” (Simon, 1995, p. 122). Therefore, the 

(mental) activity sequence is unique to the learner based on the existing conceptions that the 
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teacher infers the learner has.  

The teaching triad. The Teaching Triad (Tzur, 2010) is a model for instructional design 

that was created as a truncated, practical guide for teachers based on the seven-step instructional 

cycle. In place of the seven steps, it highlights three principle functions of the cyclical, teaching-

learning process. The Teaching Triad takes into consideration what students should learn next 

based on what they already know and the ability for a teacher to thoughtfully select tasks.  

The first “vertex” of the triad consists of the teacher’s ability to infer students’ existing, 

available mathematical conceptions based on their actions and language. For example, a teacher 

would be able to decipher two types of epistemic subjects (Piaget, 1966; Ulrich et al., 2014) in 

two learners who are presented with the following multiplicative situation: “5 packs of gum, 

each with 4 pieces of gum, how many pieces of gum in all?” The teacher notices that Learner A 

solved the problem by holding up five fingers and counting by four for each finger arriving at the 

total number of cans as 20. Learner A then explained, “I used my fingers to represent each pack 

and counted each of the pieces of gum. I knew to stop at my fifth finger because that was the last 

pack.” Learner B, on the contrary, answered with the number 9 and explained: “The question 

said ‘in all’, so I added 5 and 4 and got 9 total cans. I held up five fingers on one hand and four 

on the other and counted 1-2-3-4; 5-6-7-8-9.” In the first part of the Teaching Triad, a teacher 

would infer from Learner A’s actions and explanation that she operated on the composite unit of 

4 and seemed to determine an ability of tracking units to know when to stop counting (Risley, 

2016; Risley, Hodkowski, Tzur, 2015; Risley, Hodkowski; Tzur, 2016). Similarly, the teacher 

would infer that Learner B possibly lacked an understanding of a concept of number and the 

ability to operate on composite units multiplicatively. The teacher would infer that, at this point, 

Learner B is only able to operate on units of one and, perhaps, begin operating additively on 
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composite units.  

 Key to the first part of the Teaching Triad is the teacher’s ability to diagnose the students’ 

existing conceptions (assimilatory schemes) through creating an SOM (Steffe & Thompson, 

2000; Thompson, 2000). That is, a teacher infers the students’ understandings of the mathematics 

(SOM) and distinguish (bracket) those understandings from the teacher’s own mathematical 

understanding (FOM). This loops back to the assimilation brought forward from the 

constructivist theory on knowing and learning: “The assimilation principle requires teachers to 

understand students’ mathematics as qualitatively different from the teachers’ understanding and, 

thus, as the conceptual force that constrains and affords the mathematics students can “see” in 

the world” (Tzur, 2010, p. 50).  

In the second “vertex” of the Teaching Triad, the teacher draws on “research-based 

accounts of expert-intended (first-order) mathematical understandings” (Tzur, 2010, p. 58) and 

decides on mathematical goals for teaching based on the learner’s existing assimilatory schemes. 

This vertex uses what the student can assimilate (the first part of triad) as the foundation to then 

determine what type of cognitive reorganization may take place to create new learning. For 

example, when considering Learner A and Learner B discussed earlier, a teacher would 

recognize that Learner A seemed to operate on a composite unit of 4 and may attribute this to a 

potential early stage of multiplicative double counting (mDC) (Tzur et al., 2013). As a result, the 

teacher could determine to move Learner A to a similar problem with different numbers to 

develop further the mDC scheme (Risley et al., 2015; Risley et al., 2016). On the other hand, the 

teacher would recognize that Learner B, who counted by ones, needed further assessment by the 

teacher and instruction to strengthen her concept of number in order to begin operating on a 

composite unit before moving into any multiplicative situation. Without an SOM of the learner’s 
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mathematics, a teacher cannot tailor goals for student learning to their available schemes.  

The third, and final, “vertex” of the Teaching Triad entails that a teacher should choose 

appropriate tasks for a student’s learning based on both the teacher’s created SOM (Steffe, 1995, 

Steffe & Thompson, 2000; Thompson, 2000; Tzur, 2010) and the mathematical concepts the 

teacher intends to teach. Here, a teacher explicitly reasons how the tasks may draw on the 

student’s ability to assimilate and use reflection on activity-effect relationship as a way to 

reorganize existing understanding to move toward more advanced concepts. In the example of 

Learner A, the teacher may choose a task (e.g., a variation of the Please Go Bring for Me game) 

that would be appropriate for this child to advance her mDC scheme. On the other hand, for 

Learner B the teacher would recognize that to push that child further into mDC would be a 

daunting, perhaps impossible goal at that time. The teacher could, instead, work with Learner B 

to begin operating on composite units by way of operation on ones (e.g., the How Far From the 

Start game). The Teaching Triad is conceptualized using the HLT (Simon, 1995; Simon & Tzur, 

2004).  

  In summary, a teacher who adheres to a Conception-Based Perspective can mindfully 

use the Student-Adaptive Pedagogy approach to teaching. This will involve using the 7-step 

teaching cycle (or the Teaching Triad as its abbreviated version), including the creation of HLTs 

as a necessary practice. Importantly, CBP and a Student-Adaptive Pedagogy necessitate an 

SOM. SOM allows the teacher to determine where the students’ existing conceptions are and 

how to foster next mathematics based on what the learner understands.  

Research Questions 

This dissertation study addressed the lacuna of research about how elementary teachers 

may shift to SOMs of their students. That is, the study focused on a shift in teachers’ thinking 
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about her students’ work when beginning to recognize her own mathematics as being different 

from the students’ mathematics and starting to articulate what the latter may be. By examining 

this lacuna, we can better understand, and link, how teachers construct their own understanding 

of mathematical realities (Cobb & Steffe, 1983) with how they may shift from using their own 

mathematical realities to distinguishing and using another individual’s mathematical realities as a 

basis for teaching. Specifically, this dissertation study focused on aspects of teachers’ shift 

towards SOM as teachers: (a) began to infer what a learner’s existing understanding was while 

distinguishing it from the teacher’s, (b) began to predict what a learner might anticipate from an 

activity based on the learner’s existing understanding, and (c) began to capitalize on the expected 

learner’s assimilation of what she already knows to guide subsequent instruction.  

To this end, this study addressed the following questions: 

1.� What changes can be noticed in elementary teachers’ explanations of their students’ 

mathematical activity as teachers shift away from mostly relying on their first-order 

models (FOMs) to teach mathematics? 

2.� What may be manifested in elementary mathematics teachers’ work and explanations, as 

they shift from using only first order models towards differentiating between their first 

order model and students’ mathematical reasoning? 

�
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CHAPTER II 

INTRODUCTION 

 

To regard the mathematics and physics of education as second-order models rather than 

first-order models is more demanding because we have to know so much more to give 

currency to the voices of children, and thus to a broader spectrum of knowing not just 

constructing (Steffe, 1995, p. 505).  

 

In this study, I intended to explain a process of change in elementary mathematics 

teachers’ thinking as they make a shift towards an instructional approach that includes SOM. In 

this chapter, I discuss the importance of the study in terms of three topics. First is the apparent 

need to promote a teacher’s use of SOM to help overcome prevalent underachievement in 

mathematics within the United States. Second is the potential to understand how an SOM 

supports teachers in pinpointing and thus possibly building on students’ assimilation to increase 

learning compared to existing teaching practices. Third is the contribution to explaining how 

teacher development of SOM may serve in providing effective mathematical teaching as implied 

by the Student-Adaptive Pedagogy approach. To explicate these three topics, I first discuss 

current practices in mathematics education. Then, I examine how these existing practices warrant 

a change to SOMs. Finally, I present an alternative pedagogy to existing practices, which 

requires an ability to have an SOM.  

Significance of the Proposed Study – Why Change Current Teaching Practices? 

My main contention for the significance of this study is that examining teachers’ shift 

towards SOMs can provide an alternative foundation for addressing the prevalent 
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underachievement in mathematics in the United States. Students in the United States, across 

grade bands and social-cultural subgroups, have shown low mathematics achievement scores 

(NAEP, 2015). In an attempt to raise students’ mathematical achievements, introduction and 

implementation of standards have been repeatedly enacted (CCSS, 2010; NCTM 1989, 1991, 

2000). However, in and of themselves, those standards and reform oriented practices do not seem 

sufficient. In fact, this underachievement may be due in part to three current issues within 

education: the way mathematical standards and curricula are implemented, teacher mathematical 

understandings, and some common teaching practices promoted for pre-service and existing 

teachers. In the following subsections, I provide further descriptions of each of these issues and 

discuss how promotion of SOMs may help addressing them. In order to do so, I first present an 

image of an elementary mathematics classroom, which is used throughout the descriptions of 

each of the issues to illustrate how SOMs may serve as a solution. 

Image: A mathematics classroom. To link each of the issues to the need for SOMs, I 

provide an image of an elementary mathematics teacher and her classroom. In this classroom 

there are roughly three groups of students to whom she is teaching mathematics. First, there are 

students at grade-level. These students seem to be those for whom the recommended 

mathematics “clicks” and they may succeed. Second, there are students who are above grade-

level. These students seem to breeze through what is being taught and, at times, may be bored. 

Third, there are students who are below grade-level. These students typically struggle to 

understand the content they are being taught and may, at times, appear frustrated with their 

learning or lack thereof. I now move to describing each of the three issues while connecting them 

to the image of these three groups of students and explicating how promoting a shift towards an 

SOM can help.  
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Issue 1: Mathematical standards and curricula. One issue of the underachievement in 

mathematics may be related to the Common Core State Standards (CCSS, 2010). The CCSS 

defined what students should understand and be able to demonstrate in different mathematical 

areas. As CCSS (2010) stated, these new standards were developed to provide “research-based 

learning progressions detailing what is known today about how students’ mathematical 

knowledge, skill, and understanding develop over time” (para 4). Unfortunately, the CCSS seem 

deficient in allowing teachers to determine where a student’s existing understanding is and thus 

link with suitable goals for those students (Tzur, 2011).  

Instead, by and large, efforts to advance students’ mathematical achievements (CCSS, 

2010; NCTM, 1989, 1991, 2000) seem to have focused on increasing expectations and fitting 

them to age groups and/or grade-levels, not to individual students. In this sense, the standards 

reflect their authors’ FOMs. Accordingly, curricula developers have designed lessons for 

progressions that involve student interaction with the required grade-level material (McGraw-

Hill Education, 2012; New York State Education Department, 2014; Pearson Education, 2012; 

The Math Learning Center, 2014; University of Chicago School Mathematics Project, 2007). 

This can be seen in reform-oriented teaching characterized by a Perception-Based Perspective, as 

explained in Chapter I (Simon, Tzur, Heinz, & Kinzel, 2000). Such interaction through teaching 

promotes students’ mathematical understanding through immersing them in hands-on tasks and 

activities that, the developers and teachers believe, will bring about the “seeing” of the intended 

mathematics.  

According to such an approach (PBP), students would “get” the mathematics by 

participating in the activity. However, such an approach seems to mask differences in how 

students assimilate the tasks/activities and thus can access the prerequisite mathematical ideas 
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and engage in reasoning about intended ones. Dewey (1902) asserted that such an approach, 

which is not focused on student available (assimilatory) conceptions, lacks a direct relationship 

to the child’s present or past experience and understanding. He considered this as a manifestation 

of three evils for student learning: (a) lack of organic connection to content, (b) lack of 

motivation, and (c) loss of quality in the learning process. In other words, with standard- and 

reform-oriented teaching, little to no attention is given to students’ existing conceptions. 

Accordingly, there seems to be no attention to how teachers can determine what students can 

assimilate and therefore use as a basis for future, more advanced, mathematical concepts for the 

student.  

In the aforementioned image of three groups within a classroom, if a standards-driven 

curriculum is implemented, only students who have the conceptual prerequisite for the intended 

learning are likely to gain from the enacted curriculum. This claim is rooted in the stance on 

learning as the advancement from not knowing to knowing a mathematical concept by 

reorganizing one’s existing schemes (detailed in Chapter I). Thus, the current approach to 

teaching, promoted through typically used, standard-based curricula, can at best cater to the 

reorganization of assimilatory schemes of one of the three groups of students (e.g., the ones 

considered at grade-level). Unfortunately, the other two groups of students are not likely to learn 

the intended mathematics (e.g., it is “above their heads,” or they already have the intended 

mathematics). Specifically, for the students below grade-level, the content is so far removed that 

they are mostly unable to assimilate the tasks/activities and, thus, are unlikely to make progress. 

Tzur et al. (2017) have recently provided a demonstration of this issue, by showing the predictive 

power of the strength of a child’s conception of number as composite unit on her ability to 

engage in reasoning with the multiplicative double counting (mDC) scheme (Tzur et al., 2013). 
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Efforts to raise student achievements in mathematics seem to fit students to the required 

grade-level standard and curriculum. They thus, at best, seem to foster learning by students with 

“grade-level assimilatory schemes.” What seems lacking in these efforts is an approach that fits 

curricular goals and activities to every student’s available conceptions as a way to further 

promote each of their mathematical conceptions (Tzur, 2008). This latter approach necessitates 

understanding how teacher may shift towards an SOM so they can base their instruction on a 

student’s existing mathematical realities so it promotes assimilation and conceptual 

reorganization suitable to every individual student.  

Issue 2: A teacher’s mathematical understanding. A second issue pertains to teachers’ 

mathematical knowledge for teaching and how it effects students’ learning and achievements 

(Hill, Rowan, & Ball, 2005). Mathematical knowledge for teaching involves much more than 

teachers’ ability to solve mathematical equations and arrive at the correct answer. Teachers also 

need to understand the underpinnings of mathematical concepts, to both analyze and foster 

students’ solutions and explanations (Hill et al., 2005).  

 Furthering a teacher’s mathematics may not be sufficient to increase their pedagogical 

content knowledge for teaching. However, as I articulated in Chapter I, it is a necessary 

component for teaching mathematics, shifting towards an SOM, and creating a foundation upon 

which to build pedagogical content knowledge. Ball (1991) stated, “a teacher’s understanding of 

mathematics is a critical part of the resources available which comprise the realm of pedagogical 

possibility in teaching mathematics” (p. 52). Without such understanding, the realm of 

pedagogical possibility is insufficient (Ball, 1991, 2000).  

In order to create an SOM of a student, a teacher needs to have an in depth understanding 

of the mathematics to which she tries to promote (Cobb & Steffe, 1983). In particular, the 
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teacher’s mathematics allows for two things: (a) inferring what the student can assimilate and (b) 

creating a model of the student to predict possible ways to help the student reorganize the 

existing mathematics into more advanced concepts (Steffe, 1995). If teachers do not understand a 

mathematical concept for themselves, it is highly unlikely they could recognize it in others. 

In order to foster a student’s reorganization of her existing understanding into more 

advanced mathematics, the teacher has to first recognize the existing mathematical mental 

actions of the student. This requires the teacher, or the more knowledgeable other, understand the 

mathematics more deeply than the student. Consider, for example, fostering a student’s shift 

from counting-on to mDC (Tzur et al., 2013). To do this, a teacher needs to first recognize that 

the student views both addends in an additive problem as units composed of ones. Hence, the 

student anticipates that when combining two quantities, she can begin with one of those 

quantities as a thing and count-on from it while intentionally keeping track of the second 

quantity to know when to stop counting (Tzur & Lambert, 2001). In the 3-group classroom 

image, this would mean, for example, a teacher’s ability to identify children who are yet to 

construct a conception of number (e.g., they count-all), or have constructed a weak conception 

(e.g., counting-on), or have constructed a strong conception of number (e.g., break-apart, make a 

ten, or BAMT strategy; see Tzur et al., 2017). 

With this recognition, the teacher can then adapt instruction to each student in those 

groups. For those with BAMT, the teacher can work to foster their construction of the mDC 

scheme; for those with counting-on the teacher can foster construction of decomposition of 

composite units (e.g., BAMT); and for those with counting-all the teacher can foster construction 

of number as composite unit. However, if a teacher has yet to construct a conception of mDC 

herself (as opposed to reasoning additively about multiplication, as in “repeated addition”), she is 
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unlikely to recognize and foster this way of reasoning in her students. To operate using both an 

SOM and an FOM requires that one can recognize, and therefore make, an inference to the 

mental activity of a student’s mathematical understanding based on her observed behaviors and 

explanations. Noticing and interpreting these behaviors and explanations greatly depends on a 

teacher’s FOM (Cobb & Steffe, 1983). Simply put, a teacher’s FOM seems to serve as an “upper 

cap” for her SOM.  

In general, if a teacher does not have a conceptual understanding of the mathematics 

being taught, there is, at best, the possibility for one group of students to learn the mathematics. 

The “at best” notion here refers to the likely possibility of none of the groups learning the 

mathematics properly (e.g., all would come to know multiplication as repeated addition, like the 

teacher). Moreover, if one of these students enters into a place where they can no longer 

assimilate and reorganize the mathematics, a teacher who does not understand the mathematics is 

not likely to recognize this. Similarly, the teacher is unlikely to pinpoint why the below grade-

level students are struggling with the math and, therefore, be unable to provide intervention (I 

demonstrate these possibilities with the cases of Charlie and Sam, analyzed in Chapter IV). 

While the teacher may recognize the above grade-level students need more advanced ways of 

learning, the teacher’s lack of understanding of the mathematics would limit the nature and 

effectiveness of extensions to their learning of the mathematical concept. 

Issue 3: Teachers’ awareness of students’ mathematics. A third issue involves efforts 

that have been made to design teacher development toward the ability to notice what students are 

attending to (Jacobs, Lamb, & Philipp, 2010; Mason, 1998, 2008). In their view, the focus seems 

placed on awareness and noticing of specific students’ behaviors and strategies, but not on 
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inferences as to what mental activities underlie the noticed behaviors (SOMs) and, therefore, 

why particular behaviors occur and make sense for the students.  

Accordingly, the work of Mason (1998, 2008) and Jacobs et al. (2010) suggested that 

teachers notice what students attend to, but the notion of assimilation seems missing in their 

view. In contrast, if a teacher is operating with an SOM, she can better understand why students 

are attending to what they do and behave the way they do. For example, consider the example 

(from Chapter I) of a teacher who works with a child while solving the problem, “You have 5 

packs of gum; each pack has 4 pieces of gum. How many pieces of gum do you have in all?” The 

teacher may notice the child is adding ones as opposed to counting and tracking numbers larger 

than ones. A teacher who uses an SOM would not only attend to it (as Mason and Jacobs et al. 

emphasized) but also understand that units of one, rather than composite units, may be what is 

mentally available to the student. Consequently, that teacher would be able to consider that a 

student can assimilate counting by ones and thus bring forth this concept, and transform it, when 

teaching a more advanced mathematical conception.  

While the efforts of Mason (1998, 2008) and Jacobs et al. (2010) provided a good first 

step, they seemed to pay little attention to the need for teachers to infer into the mental activity 

that may underlie what students attend to and why they behave the way they do. That is, those 

researchers seemed to overlook assimilation as a construct that explains what facilitates the 

students’ attending. In this sense, noticing is necessary but insufficient for fostering student 

learning and reasoning, because it falls short of specifying students’ assimilatory schemes. An 

SOM takes noticing further by using it as a basis for inferring the conceptual roots for why this 

student attends to it (assimilation). As I explained in Chapter I, such inferences provide the basis 

for fostering further learning as a reorganization of students’ available schemes (Piaget, 1971, 
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1985, 2001; Simon, 1995; Simon, Tzur, Heinz, & Kinzel, 2004; Steffe & Olive, 2010; von 

Glasersfeld, 1995).  

Considering the three-group classroom again, the teacher would notice that the at grade-

level students seem to be working through the problems and making some progress toward the 

curricular goals (standards). The teacher would also notice the particular struggles of students 

who are below grade-level (e.g., with calculations or with correct strategies). However, the 

teacher would not be able to pinpoint assimilation affordances and constraints in students’ work, 

nor would she be able to use those as a way to build a model of the student’s thinking (which is 

different from the teacher’s) that explains why the students may be struggling (I demonstrate this 

with the cases of Charlie and Sam in Chapter IV). Similarly, the teacher would notice the above 

grade-level students excelling at the task without being able to pinpoint the assimilation 

affordances and constraints these students have. Thus, the teacher is likely to engage those 

students in tasks that would not foster further mathematical growth for them.  

I have discussed three potential issues within education of the mathematics 

underachievement: standards and curricula, teacher mathematical understanding, and teacher 

development of noticing what students are attending to. I will now explain how SOMs can 

contribute to addressing these three issues and why my study of a shift towards SOM can make a 

contribution to change in the mathematics underachievement by fostering mathematics teacher 

education.  

When a shift towards SOM occurs, teachers can begin to separate students’ mathematical 

understanding from their own and therefore recognize that a student’s experience with the 

learning can be very different from the teacher’s. (This is further discussed with the case of 

Charlie in Chapter IV.) Such a separation may create a way of reasoning through the standards 
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and curricula, which can then lead the teacher to decipher through tasks and lessons.  

Specifically, the deciphering could allow teachers to make choices for altering the tasks and 

lessons based on their inferences into how students may assimilate a task, not how they (the 

teachers) would. Therefore, creating SOMs of students can allow teachers to think differently 

about the reform-oriented tasks and make necessary adjustments that could cater to every 

students’ available conceptions and allow students to advance via reorganization (see Chapter I) 

of their existing understanding.  

Teachers’ ability to create an SOM of their students is capped by their own understanding 

of the mathematics (Cobb & Steffe, 1983; Steffe, 1995). To shift towards SOM entails teachers’ 

better understanding of the mathematics. Therefore, a shift towards SOM can increase teachers’ 

mathematics. This in turn may create an enhanced ability for the teacher to infer into students’ 

thinking and allow the teacher to use that inference to predict possible ways in which the student 

may reorganize her mathematics into more advanced concepts.  

To shift towards SOM moves beyond simply noticing what students attend to. It takes 

into account student assimilation and uses it as a basis for instruction. In thinking about how one 

learns (Chapter I), a shift towards SOMs can develop a teacher’s ability to inference into the 

students’ mental activity and use it to then create tasks which are tailored to students’ conceptual 

understandings (not above or below their heads).  

I now turn to an example of my own development as a teacher. This example manifests 

all three issues, as I gradually shifted from operating solely on my FOM to operating on both an 

SOM and an FOM.  
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My Journey towards a Second-Order Model 

By examining teachers’ shift towards SOMs of their students’ mathematical thinking, this 

study can create a foundation for teacher educators’ work as they attempt to foster teachers’ 

ability to learn to identify student existing understanding. This can, in turn, foster a 

transformation of existing teaching practices into that which may be better adapted to students 

(Tzur, 2001). I, for example, experienced this non-trivial shift in my own efforts as a 4th grade 

elementary teacher. Although I illustrate the shift with an example from my teaching of 

multiplication, it permeated my entire practice. 

Initially, I taught my students the application of multiplication via algorithms and facts, 

which essentially constituted my own mathematics (FOM). I had no idea what multiplicative 

reasoning was. Thus, I could only use facts and algorithms to solve problems as given in the 

curriculum. I thought that if students played a game that involved practicing multiplication facts, 

and thus interacting with the materials, it would help them learn better. I noticed what the 

students were attending to, in terms of the correct execution of algorithmic steps and whether or 

not they got the correct answer, and equated those noticed behaviors with students’ 

understandings (or lack thereof).  

What I seemed to have overlooked in my prior teaching practice, and what I know now 

from my growth towards having an SOM, is that I neglected teaching my students based on the 

ways they understood the mathematics. My teaching, noticing included, was driven by the 

curriculum and standards, not by what students already knew. I believed that if students 

interacted with the set materials, they would get the math, and I would be able to attend to 

students when they struggled. Of course, this was not enough for the students’ mathematical 

success, though I did not know why at the time. Looking back at my teaching now, I see how 
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what my students could assimilate was the basis for what knowledge they could then build, but I 

did not distinguish that from my FOM. Accordingly, I also neither considered what mathematics 

would be developmentally appropriate to teach next based on the math they already knew, nor 

which tasks would sensibly promote such learning.  

Importantly, I now also recognize that, at the time, my FOM comprised a limited 

understanding of multiplication—mainly understanding it as repeated addition. I also had no idea 

of what constitutes numbers as conceptual units, or how such units serve in my students’ learning 

to reason multiplicatively. Thus, my practice could be characterized as if I tried to facilitate 

students’ learning of my own thinking (operation with FOM), instead of facilitating students’ 

construction of their understanding, using what they already knew (operation with SOMs and 

FOM).  

As I have been working with mathematics educators who focused on fostering the 

development of both FOM and SOM, I have gradually developed the awareness and ability to 

create SOMs. My perspective on knowing and learning grew toward a Conception-Based 

Perspective and Student-Adaptive Pedagogical approach. This growth allowed me to realize how 

my students’ struggles, particularly in transferring what they learned to novel situations, were a 

reflection of teaching based on my FOM. My experience serves as an example that it is possible 

for a teacher to shift from a practice rooted in her FOM to a practice rooted in both an SOM and 

an FOM. While I can now recognize this shift in me due to the intensive, targeted work with 

mathematics educators, no research exists on how such a shift towards an SOM occurs for 

teachers in general and for elementary teachers in particular. In fact, while I can report about 

some aspects of my own change, the process of transformation on my own ways of modeling 

students’ mathematics remains largely obscured. 
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A Possible Way Forward: Student-Adaptive Pedagogy – Teaching that Requires Second-

Order Models 

A teacher’s ability to construct and better understand a student’s mathematical reality (an 

SOM) can drive pedagogy, particularly if it is geared toward fostering learning as a 

transformation in what students already know (Cobb & Steffe, 1983). A specific approach that 

draws on SOMs is called Student-Adaptive Pedagogy (detailed in Chapter I) (Steffe, 1990; Tzur, 

2013). This approach entails teachers strategically and constantly identify what mathematics to 

teach and which tasks can assist in achieving the identified goals for students’ learning based on 

students’ assimilatory schemes (further defined in Chapter I). This approach underlies teachers 

tailoring of key instructional moves to students’ existing and/or evolving mathematical ways of 

reasoning.  

To successfully enact the Student-Adaptive Pedagogy approach, however, a teacher must 

learn to explicitly distinguish her own mathematical understandings (FOMs) from the students’ 

mathematics. Accordingly, a teacher needs to continuously infer and create models of plausible 

students’ understanding (SOMs) based on behaviors she notices when they solve mathematical 

tasks. In thinking about the three-group mathematics classroom at the beginning of this chapter, a 

teacher who adheres to the Student-Adaptive Pedagogy approach, which includes an SOM of her 

students, can successfully promote the learning of all three levels of students. This is due, in 

large part, to her ability to create models of each student’s assimilatory schemes and use those 

for promoting further mathematics learning. It is a teacher’s understandings and interpretations 

of the mathematical realities of students that provide the basis for using a Student-Adaptive 

Pedagogical approach. In such an approach, accepted standards, such as the CCSS, are 

understood through the teacher’s FOM and can at best serve to guide the goals (end-points) for 
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student learning. It is the creation of SOMs of students’ ways of reasoning that guide the starting 

points, the path, and how tasks may be designed to promote the intended progression.  

In Summary 

I presented three issues within our educational system and a pedagogical way forward to 

overcome underachievement in mathematics. Teachers’ shift towards SOM can help foster 

mathematics teacher education, which can contribute to closing the achievement gap. 

Specifically, shift towards SOM can: (a) create an ability for teachers to reason through the 

standards and curricula in order to provide learning opportunities geared to a students’ existing 

understanding, (b) enhance teachers’ mathematical understanding so that inferences into 

students’ mental activity can be made, and (c) allow for inferences into students’ mental activity 

based on observed student behaviors. This then can lead to instructional practices where focus is 

placed on the student first and what the student can assimilate with goals for further 

understanding via reorganization (see Chapter I).  

The proposed solution amounts to promoting the Student-Adaptive Pedagogy approach, 

which is rooted in a constructivist, Conception-Based stance on knowing and learning. The 

Student-Adaptive Pedagogy approach includes a constant cycle of three principal teaching 

activities, as depicted in the Teaching Triad (outlined in Chapter I) (Tzur 2010). To design tasks 

beneficial for students’ conceptual advances, the Student-Adaptive Pedagogy approach requires 

regular planning and modification of the HLT (Simon & Tzur, 2004), which is the third of a 

seven-step cycle outlined by Tzur (2008). For teachers to enact Student-Adaptive Pedagogy 

suitably, they need to add SOM of their students’ mathematical thinking to their FOMs of 

mathematics (while constantly improving the latter).  

 



 52 

CHAPTER III 

METHODS 

The main purpose of this study was to examine and explain a possible process of change 

in elementary school mathematics teachers’ thinking as they make a shift towards an 

instructional approach that includes using a second-order model (SOM) (Steffe, 1995, 2000). 

While research exists on the types/levels a researcher may be able to create for an SOM (Ulrich, 

Tillema, Hackenberg, & Norton, 2014), this dissertation study focused on what was the 

possibility for an upper-elementary teacher to move towards one of the levels of SOM. To recap, 

this study intended to answer the following research questions: 

1.� What changes can be noticed in elementary teachers’ explanations of their students’ 

mathematical activity as teachers shift away from mostly relying on their first-order 

models (FOMs) to teach mathematics? 

2.� What may be manifested in elementary mathematics teachers’ work and explanations, as 

they shift from using only first order models towards differentiating between their first 

order model and students’ mathematical reasoning? 

Currently, there appears to be no research on the advancement of SOM within teachers. 

Thus, research for this study needed a design to which the researcher could both examine the 

phenomenon under study and generate an explanation of processes participants might go through 

as they make a shift towards SOM (Creswell, 2013). Accordingly, a grounded theory 

(qualitative) research design was used (Glaser & Strauss, 1967). In addition, to increase the 

likelihood of the phenomenon under study to actually take place, in this study the researcher 

served two roles: a coach to the teachers and a researcher, continually researching the teachers’ 

changes through the coaching. Accordingly, this study used the Teaching Development 
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Experiment methodology (TDE) (Simon, 2000). In this chapter, I include the background of the 

larger project, within which this dissertation study has been conducted, a description of the study 

participants, and a description of the Teacher Development Experiment methodology.  

Research Setting 

 This study was conducted within the context of a larger project, funded by the US 

National Science Foundation (NSF), titled, Student-Adaptive Pedagogy for Elementary 

Teachers: Promoting Multiplicative and Fractional Reasoning to Improve Students’ 

Preparedness for Middle School Mathematics project (AdPed Project)8. This project aims to (a) 

support teacher growth in understanding and implementing Student-Adaptive Pedagogy through 

a professional development model that focuses on multiplicative and fractional reasoning, and 

(b) to promote/improve student learning and outcomes while measuring their growth in those 

mathematical domains (Tzur et al., 2015). Four main questions guide the larger study: 

1.� How can key dimensions of Student-Adaptive Pedagogy be identified and measured 

in teacher practices? 

2.� How can students’ multiplicative reasoning be measured? 

3.� To what extent does the professional development model promote teachers’ growth 

toward Student-Adaptive Pedagogy? 

4.� Do student outcomes increase after teacher professional development? 

 The larger AdPed Project involves, as subjects, both teachers and students of upper-

elementary grades from elementary schools in an urban area in the western United States. Four 

schools, from two school districts, are part of the larger project. Each of the districts has over 

                                                
8 This study was supported by the US National Science Foundation under grant 1503206. The 
opinions expressed do not necessarily reflect the views of the Foundation. 
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75% of the student population who are English Language Learners (ELL) and receive free or 

reduced lunch.  

As discussed in Chapters I and II, the Student-Adaptive Pedagogy approach necessitates 

that a teacher operate with an SOM. However, operating with an SOM does not necessarily make 

a teacher one who adheres to the Student-Adaptive Pedagogy approach. Studying teachers who 

participated in the larger project made sense, because it was my hypothesis they will have 

opportunities to shift towards an SOM as their development toward Student-Adaptive Pedagogy 

is promoted. Thus, these teachers could serve as subjects for detecting and studying the 

phenomenon of a shift towards SOM. 

This dissertation study used a subset of data collected within the larger AdPed Project, 

consisting of multiple teaching episodes and learning interactions between me, the researcher-

coach, other team members of the larger project, and the participating teachers. As the 

researcher-coach (RC), I recognize the original goal of the larger project was to promote growth 

in the Student-Adaptive Pedagogy approach to teaching. Thus, working with teachers who 

participated in the larger project provided a strategic research site for detecting a shift towards 

SOM. Specifically, each event of data collection in the larger project placed an explicit focus on 

the extent to which teachers understand students’ mathematical conceptions, that is, on what 

each student could currently assimilate. Creating an SOM requires a hypothetical thinking 

(making inferences) of the student’s knowledge in order to gain understanding of what the 

individual could assimilate (Steffe, 1995). As such, developing an SOM has become a sub-goal 
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of my work with each of the two case study teachers9. Before discussing the TDE methodology, I 

provide background for each of the participants.  

Participants 

 This study used a convenience and purposeful sampling scheme (Onwuegbuzie & 

Collins, 2007). I chose the sample of two case study teachers among the participants of the 

larger, AdPed Project, so they could inform the phenomenon under study (Creswell, 2013), 

namely, their possible shift towards SOM. Focusing on only two teachers followed a 

recommendation made by Steffe (personal communication), to work with a small number that 

provides for in-depth scrutiny of a phenomenon that has not been studied previously. To this end, 

the sample consisted of two upper-elementary teachers who, when joining the larger project, 

seemed at different entry points in regards to both SOM and Student-Adaptive Pedagogy 

approach (background of each participant is described below). Those entry points helped to 

increase variation and likelihood of detecting a shift towards an SOM. As Creswell (2013) stated, 

“when a researcher maximizes differences at the beginning of the study, it increases the 

likelihood that the findings will reflect differences or different perspectives—an ideal in 

qualitative research” (p. 157). By increasing sampling variation, I intended to enhance the 

possibility to better understand how to shift from sole use of FOM towards including an SOM in 

the teacher’s pedagogy may occur.  

One possible increased variation criterion involved prior experience with the Student-

Adaptive Pedagogy approach; that is, before teachers began their participation in the larger 

project. In the sample, I included both a teacher who had no previous experience with the 

                                                
9 I describe each of the data collection events and their relation to development of SOM in the 
Data Collection section of this chapter.  
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Student-Adaptive Pedagogy approach and one who had attended graduate courses at the 

university, in which promoting the Student-Adaptive Pedagogy approach served as a major goal. 

Another criterion to increase variation was the experience of teaching each participant had upon 

commencement of the study (novice or experienced). Specifically, one teacher from each 

category of these two criteria was included in this study, which I now further explain.  

A case study with previous experiences: Charlie. When joining the larger AdPed 

Project, Charlie (pseudonym) was just beginning his second year of teaching in a 4th grade 

classroom. At that point in time, he had received his teaching certification and Master of Arts 

degree in Curriculum and Instruction. As part of the Teaching Certificate program, prior to 

joining this study, he had taken mathematics education courses that focused on mathematical 

knowledge for teaching, on inferring students’ conceptions, on determining next mathematics to 

teach based on what students already know, and on better selecting tasks to help students learn 

the intended math. Since Charlie’s graduation, he had been taking additional courses in 

mathematics education at the university. Additionally, prior to joining the study, Charlie had co-

taught elementary mathematics to students in his classroom with professors from the university 

who taught the mathematics education courses.  

A case study with no previous experience: Sam. When joining the AdPed Project, Sam 

(pseudonym) had no prior experience with the Student-Adaptive Pedagogy approach. Sam was 

then starting her eighth year of teaching and was teaching in a third grade classroom. Of several 

possible teachers in the larger project, I chose Sam as a case study of an experienced teacher 

without prior exposure to the Student-Adaptive Pedagogy approach, because her growth through 

the larger project’s activities indicated likelihood for detecting aspects of a shift towards SOM. 

While her growth appeared different (and possibly less pronounced) than Charlie’s, Sam 
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provided a contrasting case and thus an increased likelihood of studying different stages/phases 

in teachers’ shift towards SOM.  

Qualitative Research Methods 

This study used a grounded theory (Glaser & Strauss, 1967) qualitative approach, 

designed to examine a phenomenon that has not yet been studied. Qualitative studies that use 

grounded theory are those that involve researchers seeking to generate and discover a theoretical 

explanation for a process or an action (Creswell, 2013). Denzin and Lincoln (1994) depicted 

qualitative research as,  

multimethod in focus, involving an interpretive, naturalistic approach to its subject 

matter. This means that qualitative researchers [are] attempting to make sense of, or 

interpret, phenomena in terms of the meanings people bring to them. Qualitative research 

involves the studied use and collection of a variety of empirical materials—case study, 

personal experience, introspective, life story, interview, observational, historical, 

interactional, and visual texts—that describe routine and problematic moments and 

meanings in individuals’ lives. Accordingly, qualitative researchers deploy a wide range 

of interconnected methods, hoping always to get a better fix on the subject matter at 

hand. (p. 2) 

I chose a qualitative method for this study because there is currently no existing research on how 

a shift towards operating on both an FOM and an SOM may occur in a teacher. Creating an 

initial depiction of this phenomenon would be supported by qualitative methods. Specifically, I 

chose to study teachers in their classrooms during an academic year in which they were receiving 

coaching through the larger AdPed Project Professional Development (PD) program, which 
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enhanced the likelihood of this shift in each of the two case studies. Each qualitative method for 

data collection that I used is further described under Data Collection.  

Due to the unknown phenomenon of teachers’ shift to operating with an FOM and an 

SOM, I anticipated that, like in other qualitative studies, the interactions with the participants 

could lead to modifications, adjustments, and alterations of my initial hypotheses. Such 

modifications were expected particularly because of the reflexive relationship, between coaching 

the teachers and analyzing data about their shift towards SOM. This reflexive relationship is a 

key aspect of the TDE methodology I chose, which is describe next.  

Teaching development experiment (TDE). In this section, I outline key elements of a 

TDE (Simon, 2000), which is the qualitative approach used in the larger project and built on in 

this dissertation study. I then describe how the elements of the AdPed Project and data collection 

of this study align with components of a TDE. This alignment provided opportunities for both 

promoting teachers’ growth and for analysis of that growth.   

Simon (2000) designed the TDE methodology for studying teachers’ development by a 

researcher acting as both the researcher and a coach. TDE interweaves key elements of three 

constructivist methodologies: (a) Teaching Experiment (Cobb & Steffe, 1983; Steffe, 1991; 

Steffe, Thompson, & von Glasersfeld, 2000), (b) Whole Class Teaching Experiment (Cobb, 

2000; Cobb, Yackel, & Wood, 1993), and (c) a case study methodology. I now briefly describe 

each of these in the context of TDE before defining how each of these was part of this 

dissertation study.  

 Constructivist teaching experiment/whole class teaching experiment. The TDE 

interweaves elements of the constructivist teaching experiment (Steffe, 1991) and of the whole 

class teaching experiment (Cobb, 2000). In both, the researcher serves as the teaching agent who 
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promotes the learning she sets out to study. This allows for increasing the likelihood of 

reflexively fostering the phenomenon to be studied while engaging the researcher in a process of 

reflection, analysis, iteration, and designing instruction to reach repeatedly refined goals (Simon, 

2000; Steffe, 1991).  

 The Constructivist Teaching Experiment (Steffe, 1991) was designed to inquire into how 

students construct particular mathematical ways of thinking (e.g., schemes). It focuses on 

formulating a model of a student’s mathematical reality (i.e., SOM) and how that reality changes 

through teaching mathematics for conceptual growth. Researchers use teaching experiments to 

explore and explain goal-directed, mental, mathematical activity of students (Czarnocha & Maj, 

2008; Steffe, 1991). Similar to a teaching experiment, teachers who are participating in the PD of 

a TDE are considered the “students.” Accordingly, for the teaching experiment elements of this 

study I use two main methods (further explicated below): Buddy-Pairs (Tzur & Marshall, 2003; 

Tzur et al., 2015) and Account of Practice data sets (Simon & Tzur, 1999).  

Whole class teaching experiments focus on promoting teachers’ own mathematics 

(Simon, 2000), as well as enhancing their mathematical instruction. In this study, the targeted 

(enhanced) instruction is the Student-Adaptive Pedagogy approach. Promoting teachers’ 

development of this approach focused on each vertex of the Teaching Triad (Tzur, 2010): (a) 

what are students’ current mathematical conceptions, (b) what mathematics do I intend for my 

students to learn based on their current conceptions, and (c) what tasks are likely to foster the 

intended conceptions. A shift towards an SOM falls under the first vertex. As part of the TDE, 

data for this study were collected through the two Summer Institutes and through the half-day, 

professional development workshops (both further detailed below).  
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 Case study. The case study portion of the TDE includes studying the real-life instruction 

of a teacher within her classroom (Simon, 2000). These job-embedded experiences of teacher 

learning allow the researcher-coach to gain insights into an individual teacher’s development 

within the overall study. The case study portion of a TDE largely takes into account how 

development occurs, which is then possibly enacted in practice, within the mathematics 

classroom taught by the teacher (Simon, 2000). For this dissertation study, besides the variance 

in entry points to the study, each participant served as a case of teacher development that 

included learning through enacting and reflecting on teaching activities within a real-life 

classroom setting (Creswell, 2013). 

Data Collection 

The TDE consists of both whole group and individual interactions between the 

researcher-coach and the case study participants. For this study, both the whole group and 

individual components were utilized for data collection. Each of these components had multiple 

sessions. Each session is considered and referred to as an “episode.” Episodes include a sequence 

of moves that were used to promote teacher change, and, in this dissertation study, focus on the 

nature and extent to which the shift towards an SOM took place. 

The whole group episodes consisted of two Summer Institutes as well as four half-day 

Professional Development workshops. Individual teaching episodes consisted of both Account of 

Practice data sets (Simon & Tzur, 1999) and of Buddy-Pairs (Tzur & Marshall, 2003). These 

guided co-teaching sessions were with me or other AdPed Project team members/RCs and the 

case study teachers. All episodes were part of the larger AdPed Project, and key aspects of these 

PD components of the larger project are described below.  
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Each episode within a TDE methodology involves the researcher(s) as both a researcher 

and a coach (hereafter referred to as researcher-coach or RC). The researcher-coach enacts or 

observes and co-organizes/plans each of the episodes to generate and confirm (or disprove) 

ongoing hypotheses regarding teacher development (Simon, 2000). For each episode, I took field 

notes along with another team member who assisted in documenting observations, generating 

hypotheses, recording overall impressions, and planning future work with the teachers. All 

episodes were recorded on video for future analysis and reference. I now describe each of these 

data collection episodes in detail and describe specifically how, in each episode, there is an 

enhanced sub-goal for the study participants of promoting shift towards an SOM. 

Summer institutes. The AdPed Project included two, five-day Summer Institutes (SI-1 

and SI-2), led by PI Tzur and the AdPed Project team to promote teachers’ growth toward the 

Student-Adaptive Pedagogy approach. SI-1 focused on five main goals: 

1.� Build a community of learners through building positive, caring relationships; 

2.� Deepen teachers’ ways of reasoning multiplicatively (whole numbers, fractions); 

3.�  Foster understanding of students’ ways of reasoning that differ from the teacher’s 

and make sense of where students are conceptually along a research-based, 

developmental path for: 

a.� Concept of Number, 

b.� Multiplicative reasoning path (whole numbers), and 

c.� Fractional reasoning path; 

4.� Promote teachers’ appreciation and understanding of student struggles in learning 

upper-elementary mathematics; and 
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5.� Improving teachers’ practices by promoting a shift toward the Student-Adaptive 

Pedagogy approach with a cyclical process of: 

a.� Noticing student strategies (not just/mainly right or wrong answers); 

b.� Diagnosing plausible conceptual sources of strategies (why they make sense 

to the students); 

c.� Acting (plan-the-implement) with (a) articulated goals for students’ learning 

along the developmental paths and (b) tasks/activities – with explicit rationale 

– to foster intended progress; and  

d.� Reflecting on the extent/reasons that activities did (or not) bring about 

intended the learning. 

To accomplish these goals, SI-1 engaged teachers in the daily activities as follows. 

 
Figure 3.1. Five-day plan for SI-1. 
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Three of the SI-1 goals were relevant for promoting, and studying, shift towards an SOM: 

(a) deepening teachers’ ways of reasoning multiplicatively (whole numbers, fractions), (b) 

fostering understanding of students’ ways of reasoning that differ from the teacher’s and making 

sense of where students are conceptually along a research-based, developmental path, and (c) 

improving teachers’ practice by promoting shift towards the Student-Adaptive Pedagogy 

approach with a cyclical process (noticing and diagnosing). SI-1 spent extensive time promoting 

teachers’ development of the mathematical knowledge for teaching (MKT; see Hill & Ball, 

2004). This focus on teachers’ MKT began on Day 1, through activities that fostered better 

understanding of place value base ten systems, multiplication, division, and fractions. Activities 

used for promoting growth in teachers’ mathematical understanding were selected so that 

teachers could then use them with students in their classrooms. For example, teachers learned 

mathematics through activities such as the Please Go Bring for Me multiplicative reasoning 

game (Tzur et al., 2013) and the French Fry fractional reasoning development activity (Tzur & 

Hunt, 2015), which were designed to promote students’ learning of those ways of reasoning. 

In addition, in order to create an SOM of a student, one has to recognize and identify that 

the student’s understanding of the mathematics (i.e., what the student can assimilate) may be 

different from the teacher’s own mathematics (Steffe, 1995). This can eventually lead to 

promoting further, more advanced mathematics in students, which may be different from how 

the teacher’s own promotion of mathematics occurred. SI-1 focused on this idea in two ways. 

First, it involved teachers watching videos of students as the students worked through tasks, 

guiding teachers to infer mental units students might have used to solve a task and how they 

operated on those units. Second, teachers were engaged in learning about aspects of the Student-

Adaptive Pedagogy approach. This approach asserts learning occurs through a reorganization of 
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what a student already knows; that is, reorganization of her assimilatory schemes. This twofold 

focus (MKT, children’s thinking) was emphasized throughout the five-day workshop by 

displaying a version of the Teaching Triad (Tzur, 2010) and discussing the importance of 

identifying what a student can assimilate in order for that student to reorganize more advanced 

mathematical understanding. 

While goals for SI-2 were similar to those for SI-1, the AdPed Project team altered the 

plan to fit with teachers’ growth over the year of PD. For example, in SI-2, promoting teachers’ 

MKT focused on their fractional reasoning, whereas in SI-1 it focused on multiplicative 

reasoning with only a minimal attention to unit fractions. This included advanced ways to reason 

with fractions, such as reversible and recursive partitioning schemes (Steffe & Olive, 2010; Tzur, 

2014). SI-2 also included more observations of students and the underlying reasoning (e.g., units 

and operations), in which they were solving particular tasks. Further facilitation regarding the 

theory of learning that underlies the Student-Adaptive Pedagogy approach was also emphasized, 

including a presentation of a new, improved diagram of the teaching cycle and explicit 

discussions of assimilation and accommodation.  

Specifically, SI-2 focused on the following five main goals: 

1.� Build a community of curious learners with positive, caring relationships;  

2.� Deepen teachers’ ways of reasoning multiplicatively (mostly revolving around 

fractions);  

3.� Foster teachers’ understanding of students’ ways of reasoning that differ from the 

teacher’s and make sense of where students are conceptually along a research-based, 

developmental path for: 

a.� Conception of number, 
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b.� Multiplicative reasoning path (whole numbers), and 

c.� Fractional reasoning path; 

4.� Appreciate and understand student struggles in learning upper elementary 

mathematics; and 

5.� Improve teaching through a shift toward the Student-Adaptive Pedagogy approach 

with a cyclic process consisting of five main practices:  

a.� Noticing student strategies (not just/mainly right or wrong answers), 

b.� Inferring plausible conceptual sources of those strategies (why they make 

sense to students), 

c.� Acting (plan-then-enact) in the classrooms to foster students’ learning along 

the developmental paths, while using tasks/activities – with explicit rationale 

to foster intended progress, and 

d.� Reflecting on the extent/reasons that activities did (or not) bring about the 

intended math.  

To accomplish these goals, SI-2 included the following daily activities for teachers to 

engage in.  



 66 

 
Figure 3.2. Five-day plan for SI-2. 
 

Half-day professional development workshops. As part of the AdPed Project’s PD 

program, teachers in each school building were engaged in half-day workshops during the 

academic year. These PD workshops focused on (a) promoting teachers’ own understanding of 

the mathematics they teach, specifically MKT of multiplicative and fractional reasoning; (b) 

teachers’ awareness of and capacity to identify student conceptions; and (c) designing and 

adapting classroom situations to advance students from these conceptions to the intended ones 

(Tzur et al., 2015). Each workshop consisted of either one, four-hour session or two, two-hour 

sessions held within a week of each other. Similar to SI-1 and SI-2, the workshops focused on 

teachers’ development of awareness to and an ability to distinguish students’ reasoning from the 

teachers’ own mathematical understanding. That is, AdPed Project PD workshops provided 
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additional context in which teachers could shift towards an SOM, and thus another source of data 

for this dissertation study. 

Buddy-Pairs. Dr. Tzur developed Buddy-Pairs as a job embedded PD method (Tzur & 

Marshall, 2003) as an adaptation to the Japanese Lesson Study method (Bass, Usiskin, & Burril, 

2002) and the idea of ThinkingPartners (Cordova, Kumpulainen, & Hudson, 2012). Each Buddy-

Pair episode consisted of two, interrelated activities: an experience of co-teaching a lesson and a 

reflection session about that co-taught lesson. It aimed to extend teachers’ knowledge of 

mathematics, of their students’ mathematical conceptions, and of ways to tailor future teaching 

(goals, activities) to students’ available conceptions via reflection on their own teaching 

activities as well as on their buddy’s activities (Tzur et al., 2015).  

Throughout the school year, each participating teacher partnered (buddied) with another 

teacher in her school. About twice a month, each teacher either visited the buddy’s classroom or 

hosted their buddy to observe teaching as well as students’ work. Teaching mathematics during 

those Buddy-Pair visits was done not only by the teacher in the visited classroom, but also in 

collaboration with me as a researcher-coach or other AdPed Project team member (hereafter 

referred to as co-teaching).  

Following each Buddy-Pair co-teaching session, a reflection session with both buddies 

was held led by me or an AdPed Project team member. This reflection session served as an 

opportunity for teachers to reflect on and learn more about how to better understand their 

students’ mathematical conceptions, determine what mathematics may be best for students to 

learn next based on what they know, and how to get them to the new mathematical 

understanding. Four main questions guided each Buddy-Pair episode (Tzur et al., 2015): 
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(a) What mathematical idea were students supposed to learn and what does it mean to 

understand it? 

(b) What understanding did students develop and how do you know? 

(c) What were you doing that promoted or hindered the learning sought? 

(d) What would you teach/do in the next lesson and why (explained in terms of students’ 

available conceptions)? 

A Buddy-Pair episode is specifically designed to promote teachers’ Reflection on 

Activity-Effect relationship in their teaching (Simon, Tzur, Heinz, & Kinzel, 2004), particularly 

focusing on Reflection Type 1 and Reflection Type 2 (Tzur & Simon, 2004; Tzur 2011). Each 

buddy served as a comparison to the thinking of the other teacher. By providing sources of 

comparison, both types of reflection could occur, allowing for a greater likelihood of learning for 

the teachers. 

When operating with an SOM, one must determine what a student knows conceptually 

and can therefore assimilate. This inference into the students’ assimilation can then be used as a 

guide to determine what would make sense to promote in the students (i.e., 

accommodation/reorganization). This directly pertains to questions a, b, and c listed above that 

guided Buddy-Pair reflections. These questions oriented teachers’ attention onto inferring 

students’ work in each lesson, comparing the work of students within a class, and articulating the 

students’ assimilation as a basis for learning intended mathematics. In addition, follow-up 

questions were asked as to “Why might a student answer like this?” or “Why, might this answer 

make sense for the student?” For each Buddy-Pair episode, teachers had opportunities to not only 

develop their own models of students’ thinking, but also contrast that model by discussing it with 

their buddy and the RC. When recurring multiple times, teachers’ reflection across instances of 
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their teaching activities (i.e., Reflection Type 2) may promote their shift towards an SOM of 

their students’ mathematical thinking. The next section describes a method for collecting data 

about each individual teacher within a TDE. 

Account of practice data sets. Simon and Tzur (1999) designed the Account of Practice 

(AOP) methodology as a way to inquire into a teacher’s practice by articulating, from the 

researcher’s perspective, the teacher’s perspective on knowing and learning mathematics. They 

used the term “teaching practice” to include “not only everything teachers do that contributes to 

their teaching (planning, assessing, interacting with students) but also everything teachers think 

about, know, and believe about what they do. In addition, teachers’ intuitions, skills, values, and 

feelings about what they do are part of their practice” (p. 254). AOPs serve as a way for the 

researcher to articulate how a teacher makes sense of her experience of teaching mathematics—

particularly the rationale she uses to select and/or adapt goals and activities for students’ 

learning. When regular sets are conducted over time, researchers are able to construct an account 

of the teacher’s practice as it is being developed while participating in a PD program (Simon & 

Tzur, 1999).  

 Data collection to create AOPs consists of sets that interweave interviews and classroom 

observations. Specifically, an AOP set may consist of an interview-observation-interview-

observation-interview sequence (I-O-I-O-I), which allows linking the teacher’s classroom 

activities with her thinking about those activities. This 5-episode sequence is considered a full 

AOP set. As part of the AdPed Project, some adaptations were made to include a shorter, 3-

episode sequence consisting of interview-observation-interview (I-O-I). This shorter type of 

AOP set is considered a partial set. For this dissertation study, both types of sequences were 

used. It should be noted that while AOP sets provided important data for the study, the goal of 
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the study was not to construct an account of teachers’ practice—only to use the data collection 

and analysis method for addressing the research questions about teachers’ shift towards SOM. 

 For this study, Account of Practice Data sets served as glimpses into a how a teacher 

understood the mathematics to be taught, viewed her students’ mathematics, and how that may 

have been relevant for the students’ learning of more advanced mathematics. AOPs were 

selected that focused on how the teachers were thinking about the mathematics the students 

currently have, and how intended mathematics could be promoted. In thinking about operating 

with an SOM, an AOP set provided evidence of the extent to which a teacher recognizes, or does 

not recognize, what students’ can assimilate.  

 To summarize, in this dissertation study I utilized four different data sources: Summer 

Institutes, half-day PD workshops, Buddy-Pairs, and AOPs. Figure 3.3 provides an overview of 

the data that informed each of the case studies.  
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SI-1  

(Days 
attended) 

SI-2  
(Days 

attended) 

 
Half-Day 
Workshops 

Buddy-Pairs 
(amount, 

2016/2017 
school year) 

AOPs  
(amount, 

timing, and 
type) 

 
Charlie 

 
5 5 

 
4 4 Full, May 2016 

Full, May 2017 

 
Sam 

 
5 5 

 
4 4 

Partial, May 
2016 

Partial, May 
2017 

Figure 3.3. Overview of data utilized for dissertation study. 

Data Analysis 

 As described earlier, this study followed a qualitative grounded theory approach 

(Creswell, 2013; Glaser & Strauss 1967). Accordingly, ongoing and retrospective constant 

comparative methods of data analysis were used (Creswell, 2013; Glaser, 1965). Ongoing 

analysis took place during and immediately after each Summer Institute, half-day PD workshop, 

Buddy-Pair, or AOP set. I reviewed field notes taken for that day, and paid specific attention to 

interactions in which the participants seemed to focus on discussion of students’ reasoning.  

 In order for me to infer into a teacher’s shift towards an SOM, I had to create a model of 

the teacher’s assimilatory apparatus and if that apparatus went through a change. That is, as the 

researcher as I analyzed the data, I created an SOM of the teachers in this dissertation study and 

their assimilation of their students’ mathematical behaviors as well as how they considered 

students’ mathematical knowing. In referring back to Chapter I, Conceptual Framework, my 

inferences into changes in the participants’ assimilation of their students’ mathematical 

behaviors is what constituted evidence of a shift towards an SOM. To note such changes, once 

data collection was completed, I observed and took relevant notes for all video from the Summer 

Institutes and half-day workshops. Although not used in the analysis chapter of my dissertation 
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study, because evidence of teachers’ assimilation of their students’ mathematical behaviors was 

insufficient, my notes informed the development of themes and objectives/goals for learning. For 

example, an important goal during SI-1, SI-2, and the workshops was to foster teachers’ 

understanding of students’ ways of reasoning – operations on units. These learning activities 

provided background for findings of this study (see Analysis Chapter IV, Cogitation 

manifestation). 

I then transcribed video recorded data from the Buddy-Pairs and AOP sets in 

chronological order. Each participant underwent separate, individual AOPs and BPs with the 

researcher. For Charlie, data comprised of two full AOP sets (I-O-I-O-I), a total of ten sessions, 

~45-75 minutes each, and four BPs (two in Charlie’s classroom) consisting of eight sessions, 

~45-75 minutes each. For Sam, data comprised of two partial AOPs (I-O-I), a total of six 

sessions, ~45-75 minutes each, and four BPs (two hosted by Sam) consisting of eight sessions, 

~45-75 minutes each (see Figure 3.3).  

Once transcribed, I followed a constant comparative analysis method (Creswell, 2013; 

Glaser, 1965), while interweaving case-by-case with cross-case analysis. For each teacher, 

analysis included creation of major categories, or themes and their properties (Creswell, 2013; 

Glaser, 1965). To this end, I first read through each transcript of each participant’s Buddy-Pair 

and AOP. As I was reading, I began to log what I considered to be potential evidence of 

operation solely on an FOM or on FOM and SOM. As I moved through the transcripts, 

chronologically, I began to notice contrasts in how teachers assimilated and interpreted students’ 

behaviors, which I assimilated into a shift from using just FOM to also SOM. I noted those 

contrasts in a log. As my notes increased, I began to compare them across other logs, moving 

back-and-forth between the notes of one participant (within-case) and notes of the two 
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participants (between-cases). When these comparisons led me to consider similarities across data 

segments, I noted a category for the logs I had written. I then worked to group like categories 

that focused on the core phenomenon of study—in this case, a teacher’s shift towards an SOM. I 

chose this method because it allowed creation of themes in each teacher’s shift (or lack thereof) 

towards SOM, as well as themes across participants.  

 Following, I analyzed (retrospectively), line-by-line, in categorical and chronological 

order from the transcripts all data segments that focused on the core phenomenon of SOM within 

each category I had created. My purpose in this last step of analysis was to chunk the categories 

into ideas (Glaser, 1965) and create a theme for each chunk. This also included eliminating 

excerpts that, while serving me well in the process of categorizing, did not provide compelling 

evidence in support of the themes I created. As themes were created and certain excerpts 

eliminated, I vetted them with my Dissertation Advisor (Dr. Tzur), to further consider what 

seemed to serve as compelling evidence. Consequently, although Buddy-Pair excerpts certainly 

served during the theme creation, I eliminated them from the data eventually presented in 

Chapter IV - so the most compelling evidence for each emerging theme is used. I then reviewed 

and categorized all themes that pertained to teachers’ shift towards an SOM according to how the 

themes seemed to fit with one another. Finally, I developed propositions/hypotheses that convey 

a narrative of participants’ shift towards SOM.  

I again compared across the two cases to determine possible commonalities in their shift 

towards an SOM and themes that had developed through my line by line analysis. This organic 

process of moving back-and-forth from each case to cross-participant enabled me to compare 

nuances within evolving themes, which eventually led to casting them as manifestations. I 
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selected and wrote about themes called manifestations in the Analysis (Chapter IV) of this study 

based on the extent to which they help to address one or more of the research questions.  

�
 
�
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CHAPTER IV 

ANALYSIS 

 This study examined a shift in teachers’ explanations of their students’ mathematical 

behaviors, from being based primarily on the teachers’ own mathematical knowing (i.e., FOM) 

to also attributing mathematical knowing that differs from that of the teacher (SOM). That is, this 

study aimed to describe shift in teachers’ ability to construct hypothetical models of student’s 

mathematical knowledge (underlying nature of their activities) based on and to make sense of 

students’ observable activity (Steffe, 1995). The study addressed the following research 

questions: 

1.� What changes can be noticed in elementary teachers’ explanations of their students’ 

mathematical activity as teachers shift away from mostly relying on their first order 

models (FOMs) to teach mathematics? 

2.� What may be manifested in elementary mathematics teachers’ work and explanations, as 

they shift from using only first order models towards differentiating between their first 

order model and students’ mathematical reasoning? 

The data analysis presented in this chapter is gleaned from Account of Practice data sets 

(AOP) and Buddy-Pair (BP) sessions, which were conducted and/or observed by myself – the 

author of this dissertation study. The analysis on data focused on data sets from two teachers, 

Charlie and Sam (names of teachers, as well as of students, are all pseudonyms). Throughout the 

transcripts, three researcher-coaches are quoted. Myself, the author of this dissertation study, is 

referred to as researcher-coach 1 (RC1). Researcher-coach 2 and 3, referred to as RC2 and RC3, 

were team members of the larger research project.  
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 As discussed in Chapter 1, assimilation is a central construct informing this dissertation 

study. Specifically, assimilation is used throughout this results chapter to infer a teacher’s 

progression towards SOM from the researcher’s perspective (Simon, 2000; Simon & Tzur, 1999; 

Simon et al., 2004). I focus on manifestations of changes in Charlie and Sam’s assimilation of 

their students’ mathematical behaviors and how they considered students’ mathematical 

knowing. The manifestations reflect my inferences into Charlie and Sam’s shift towards SOM; 

they do not connote awareness on their part. 

Therefore, by manifestation, I mean the results of a shift that I inferred in the teachers’ 

assimilation based on their observable behaviors. Specifically, to distinguish such manifestations 

I focused on the teachers’ ability to provide a more in-depth description of their students’ mental 

activity (SOM) that seemed separated from the teacher’s first-order model (FOM). Data analysis 

presented in this chapter indicated two distinct phases through which the shift towards SOM may 

take place: (a) some realization that a student’s mathematical experience differs from the 

teacher’s own experience and, (b) an attempt to distinguish the student’s mathematical 

experience, that is, to specify some model of the student’s thinking.  

It is important to note that each manifestation outlined indicates a shift towards SOM; 

however, these manifestations did not occur within independent activity of the case study 

participants. Each of the manifestations outlined are particularly contextualized, in that they were 

elicited as teachers’ responses to questions within the interviews. Additionally, not all 

manifestations were observed in each case study. The purpose of the analysis is to explicate the 

meaning of each manifestation in a shift towards SOM while substantiating it in the data – not to 

claim that it is necessarily appearing in each teacher’s work.  
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Accordingly, this chapter is organized around four manifestations, which I inferred in 

teachers’ shift towards the twofold appearance of SOM (i.e., realizing students may think 

differently, specifying students’ experiences). To provide a glimpse into each manifestation, I 

briefly discuss them here. Then, I shall further articulate them while analyzing teacher data 

within this chapter.  

Manifestation 1: Juxtaposition of Thinking. I shall use this term to signify when a teacher 

began to contrast her own FOM experience with a student’s different experience. As each 

participant interacted with myself or the team researchers, there were moments in which a 

juxtaposition of thinking occurred where teachers realized (through side-by-side comparisons 

between FOM and SOM) that the students’ experience was not the same as the teacher’s 

experience. For example, in the case of Charlie, by thinking about how he thought about the 

mathematics and how students thought about the mathematics, he was able to ‘bracket’ his 

understanding, which indicated an extension of his thinking from just FOM to FOM and SOM 

(further articulated below). Juxtaposing a student’s experience with one’s own is important for 

SOM, as it essentially breaks the mirror (discussed in Chapter 1) from a teacher’s point of view. 

That is, a teacher is having an exchange with the researcher that indicates students’ mathematical 

knowing differs from the teacher’s FOM. The exchange(s) seemed to allow the teacher to 

express a novel interpretation of a student’s understanding. 

Manifestation 2: Cogitation. I shall use this term to attribute to a teacher an evolving 

ability to contemplate what might their students’ experience of the mathematics be. Cogitation is 

important for SOM because it allows inferences to be made regarding the students’ mathematical 

thinking as separated from the teacher’s own mathematical understanding. For example, in the 
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case of Sam, she was better able to think about and describe the units and operations her students 

were using and how this differed from her own FOM of thinking (further articulated below).   

 Manifestation 3: Distinction. I shall use this term to attribute to a teacher an evolving 

ability to make distinctions in their students’ mathematical reasoning that go beyond the 

teacher’s own (FOM) distinctions. My analysis suggests two main types of distinctions, one 

arising from comparing between students and the other from comparing two potential types of 

understanding within one student’s reasoning. The manifestation of distinction can serve as 

evidence that the teacher brackets her own FOM from the inferences she makes in students’ 

mathematical reasoning (Steffe, 1992). For example, Charlie and Sam began to distinguish 

between a student’s ways of reasoning based on the units and operations the student could 

possibly be using to solve a particular problem and what could this mean on a developmental 

spectrum of conceptual understanding (further discussed below).  

 Manifestation 4: Mindfulness. I shall use this term to attribute to a teacher an evolving 

ability to shift her instructional focus, from basing practice only on an FOM to beginning to 

include an SOM as a force that drives fostering students’ construction of intended mathematics 

by building on their distinct, available ways of reasoning. Said differently, Mindfulness refers to 

a teacher’s intention to facilitate students’ structuring of their own activity based on the 

mathematics the teacher inferred the students understood. For example, (further articulated 

below) teachers who began developing Mindfulness expressed a want to restructure their 

instruction differently so that it would have allowed for more opportunity for the students to 

bring the mathematics they understood and then for the teacher to build on that understanding 

without telling students how to “do” the mathematics. In the next section, I analyze data 

pertaining to the first manifestation, Juxtaposition of Thinking. 
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Manifestation 1: Juxtaposition of Thinking 

 To depict Juxtaposition of Thinking as a manifestation of a shift towards SOM, this 

section includes analysis of three excerpts from AOPs. For each segment, I inferred the teacher 

went through a state of juxtaposed thinking regarding his students’ understanding of a learning 

experience and what the teacher thought could be the student’s experience. The juxtaposed 

thinking illustrated in the following excerpts indicated a recognition that students’ sense of the 

mathematics lesson is different than the teacher’s, who facilitates the experience.  

Charlie’s juxtaposition of thinking. To further clarify the manifestation of 

Juxtaposition of Thinking, I begin this section with data indicating Charlie operated solely from 

an FOM and PBP. Then, I present data of how, through interviewing, Charlie began to juxtapose 

his FOM with his students’ reasoning (Excerpt 3). The series of excerpts (1-3) presented here 

took place during Charlie’s first full AOP (AOP 1), which consisted of a full data set (that is, I-

O-I-O-I). To contextualize the excerpts, I provide a brief overview of Charlie’s pre-interview and 

observation 1 before Excerpt 1.  

In the first lesson, Charlie’s goal for students, which he stated multiple times throughout 

the pre-interview and is summarized here, was to begin comparing unit and non-unit fractions on 

a number line. For example, he asked all students to plot �
�
 and �

�
 on two separate number lines 

and to determine which of those two unit fractions was larger. He also posed the task to students 

to determine an unknown point on a number line (including �
�
, �
�
, �
	
, and �

�
). This was the first time 

Charlie’s instruction focused on the understanding of size relationships among unit fractions and 

among non-unit fractions with the whole class. 

 During the first (observed) lesson of this data set, Charlie led students through 

questioning and activities to do what, he seemed to anticipate, would allow them to accomplish 
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the learning goal. He first had students provide examples of unit fractions, define what a unit 

fraction is, and compare a few unit fractions. For example, students responded that �
�
 is a unit 

fraction because it has a one in the numerator. Charlie then included his additional understanding 

of unit fractions by leading students to state that �
�
 would repeat 6 times or add 6 times to get to 

the whole. Similarly, Charlie then guided the discussion so that students practiced determining 

which unit fraction may be smaller or larger based on the number of pieces that fit into the 

whole.  

Charlie’s enactment of a plan to foster students’ learning of the intended mathematics 

seemed guided by his FOM of unit fractions (developed, in part, in the context of the larger 

project’s PD program). It seemed to match the logical sequence of his plan as stated in the pre-

lesson interview. He started with students providing what they thought a unit fraction was, and 

when he thought they missed an important piece of information – he added it and asked the class 

to then repeat. I inferred that, for him, this rehearsal of his definition seemed adequate evidence 

that students understood unit fractions as he did, which could thus serve them in the logical 

progression to the next part of the lesson, namely, comparing two unit fractions.  

 Charlie then led students into the next portion of the lesson, which was to compare �
�

and 

�

�
. The majority of students agreed that �

�
 is larger than �

�
, however two students disagreed. Charlie 

included himself in the disagree category, stating his reason that, “8 is larger than 3 so that is 

why �
�
 is larger than �

�
.” He then challenged the class to prove to him which fraction was larger, 

which was to be done using two un-partitioned number lines he projected on the board (see 

Figure 4.1). 
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Figure 4.1. Charlie’s blank number line chart presented on the white board for students to use 

when plotting �
�
 and �

�
 to determine which fraction is larger.  

 Then, the majority of the lesson (roughly 30 minutes) consisted of letting students take 

turns, with some apparent difficulties (Charlie discussed this in his post-interview), in going to 

the board and trying to plot both �
�
 and �

�
 on the two number lines provided. Charlie’s earlier 

anticipation of the lesson progression was to move forward with plotting unit fractions on a 

number line based on students’ understanding of unit fraction as proven to him by students 

repeating his definition. However, he soon realized that, when tasked with plotting, students 

struggled to place �
�
 and �

�
 on the number lines. To me, this serves as evidence that Charlie’s 

FOM understanding of unit fractions was not available to his students. At this point, however, 

Charlie seemed unable to make the distinction that his FOM, which he is very clear about, is not 

available to students. I make this claim because his attempts to help the students seemed to be on 

how to solve the task—not on further exploring their understanding of unit fractions. That is, he 

seemed more focused on the overall goals for the lesson and making sure each was 

“accomplished” within the time of the lesson. The available data indicated no consideration of 



 82 

students’ meanings for unit fractions based on their difficulty to plot both �
�
 and �

�
 on a number 

line. Such a consideration would be indicated had he not continued on with the lesson plan – 

moving into non-unit fractions on a number line.  

 Roughly thirty minutes later, Charlie then led students through an activity to help them 

determine a non-unit fraction point on a number line with a multiple-choice question. He 

introduced this portion of the lesson by defining a non-unit fraction for students: “Any fraction 

that has a number other than one in the numerator.” Charlie again had students go through a 

similar, procedural process to the beginning of class, only this time with non-unit fractions: first 

find the unit fraction, next repeat it the number of times indicated by the numerator, and then 

make a mark where the non-unit fraction would fall on the number line (between 0 and 1). As 

each point was determined by the class, Charlie led the students through a process of elimination 

of the multiple choices. For example, he led the class to determine that Point A falls at �
	
  through 

a rather directed discussion that the �
	
  point is in the same place as Point A (see Figure 4.2).  

For Charlie, I infer, it seemed that leading students through this activity and having them 

interact with the actual plotting of points meant the students now “had the understanding”. I link 

such a conclusion on the part of the teacher to the Perception-Based Perspective (PBP), as 

discussed in Chapter 1. Specifically, he seemed to me to expect that the “We Do” portion of the 

whole class guided activity (seeing how he placed the non-unit fraction on the line) and 

discussion of the process leading to that placement – would yield the intended student 

understanding. Accordingly, to me, he also seemed to expect that they were then ready to move 

to a “You Do” portion of working independently on additional problems. This was indicated in 

Charlie’s next move, providing the students with a worksheet of tasks to determine a few more 

fractional points on a number line. The worksheet slightly differed from the class example in that 
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it contained multiple points on a number line, not just one as in the class example (Point A only). 

While students worked, Charlie moved about the class to answer questions students had about 

the task. 

  

Figure 4.2. Charlie’s presentation of plotting non-unit fractions on a number line with a multiple-

choice question to students.  

 Finally, Charlie ended the lesson with a summary of what he considered students had 

learned. He reiterated the process of finding a non-unit fraction on a number line with a new 

problem of determining who (between two runners) ran further (see Figure 4.3). He reminded 

students of the process to find a non-unit fraction on the number line: first find the unit fraction, 

then repeat it a number of times determined by the numerator as a way to find where the non-unit 

fraction would be plotted on a number line. During this summary, Charlie then seemed to bring 

in an entirely new goal for students as a way to help students understand that �
�
 and �

�
 are 

equivalent. He began showing students an equation of �
�
 divided by �

�
 is �

�
. And the lesson 

concluded.  
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Figure 4.3. Charlie’s end of class activity of finding non-unit fractions on a number line. 

I provided this background to demonstrate that, at this point, Charlie’s practice seems 

guided predominately by his FOM. For him, and I inferred he expected similarly for students, the 

logical process of plotting fractions requires first completing the production of unit fractions, 

then of non-unit fractions, and finally placing marks for the latter on the number line. In his 

FOM, the points on the number line also signify their distance from a starting point. 

Accordingly, expecting this thinking process on his students’ part seems rooted in Charlie’s 

FOM stance on how he believes the mathematics will be learned and thus how he has taught it. 

In this process, (every)one should first partition the whole in order to find the unit fraction; then, 

one uses that unit fraction and repeat it however many times the non-unit fraction requires. For 

him, I infer this logical process would repeat, apparently non-problematically, when comparing 

the other non-unit fractions. This reasoning on Charlie’s part seems to also have driven what he 

would be noticing in students’ work. At this point, there was no evidence from Charlie that he 

could consider what a learner’s meaning for unit fractions might be. He continued to move 

forward with the lesson regardless of the students’ struggle with the content.  
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At the beginning of the mid-interview of this data set (April, 2016), Charlie shared his 

thoughts on how the first lesson went. Excerpt 1 presents a portion of that interview. 

Excerpt 1: Charlie’s summary of observation-one (AOP 1, mid-interview, date: April, 

2016). 

00:35 Charlie: Um, so we spent quite a bit more time discussing unit fractions, finding 

those original two examples on the number line. Um, I was hoping they would be 

able, I guess, um, to maybe, more or less, to estimate them a little easier, but they 

really wanted them [the unit fraction marks for �
�
 and �

�
] to be super accurate on 

there. Which, took a long time; but I didn’t want to stop them, because we had 

spent all of that time when we were doing the original French Fry activity talking 

about how there is only one size unit fraction that will fit in here X number of 

times. So, I sort of let it get a little drawn out. I didn’t want to stop and say 

actually you know what, close enough is good right now. Um, so that took a little 

longer than anticipated.  

1:19 Um, when I released them to their seats to work on the worksheet, there was some 

confusion about it. So, this worksheet had a few points on a number line. And 

they were fine when there were less points than the fraction they were looking for. 

So, by that I mean if they were looking for �
�
 they knew that there needed to be 3 

points somewhere in there in order for them to find this fraction. But when it got 

to something like, find �
�
, there was a lot of confusion because they would say, 

well there’s only four points here. So, they weren’t quite seeing that they had to 

actually partition the whole themselves and then iterate that unit as many number 

of times as the numerator asked them to. So, I got a lot of questions about that. 
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So, I was going around clearing some of that up a bit. But I feel like once I went 

around to those students who were having the confusion finding some of these 

points that weren’t necessarily labeled for them it cleared up, I guess. 

2:26 RC3: Did anything surprise you yesterday [in Lesson 1/Observation 1]? 

2:30 Charlie: Um, I am, sure, I am sure it did. That is why I am thinking about it right 

now. I am just going to open up what we did yesterday real-quick.  

2:48 RC3: Oh yeah, absolutely.  

2:50 Charlie: I saved all of my work, so I could go back. Um, I guess we had been 

working on finding some equivalent fractions, and I was hoping that they would 

[have] noticed that a little more. So, by that I mean our summary question, it said 

Jason ran �
�
 of a mile. I was hoping right away that the students would be able to 

see that �
�
 is equivalent to �

�
. And they could put that line right in the middle there. 

But they struggled with that. Um, so I took some time to remind them, well 

remember we can multiply or divide any fraction by one, it is staying the same. 

And so, letting them know �
�
 is equivalent to 1. The fraction is staying the same 

we are basically getting different numbers to represent the same thing. Um, so I 

think they had forgotten about that a little bit. When we got down to this part 

(points to the lower number line of the summary problem where students were to 

plot �
�
), I sort of wrapped it up a little quicker than we did up here [referring to the 

thirty minutes of class when students found �
�
 and �

�
 on a number line]. Rather than 

taking all that time to find those eighths on the number line, I said, well, can we 

find an equivalent fraction and then move from there to help them.  
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 I see in Excerpt 1 two points of importance in explaining my interpretation of Charlie’s 

stance on learning and teaching fractions before the first manifestation of juxtaposing of thinking 

began to appear. First, I infer he seemed to recognize students having some difficulty with the 

learning goals he set for the lesson, while not alluding to possible conceptual sources for these 

difficulties. Instead he turned his focus on possible distractors in the lesson that might have led to 

students’ confusion (see line in 1:19). He also stressed that students have forgotten what he had 

already taught them (see lines 00:35 and 2:50). Charlie did not appear to contemplate the 

plausible source for such forgetting. Rather, he noticed it and his responses suggested attempts to 

convey the ‘forgotten’ mathematics by reminding students what they have done before. 

Accordingly, the second point pertains to his recognition of the students’ struggles. Charlie 

turned to pointing out/helping students with what he thinks they missed “seeing.” I infer from 

this action that Charlie’s underlying perspective is perception-based (PBP)—the students will 

come to see what he (his FOM) sees (see lines 1:19 and 2:50).  

These two points suggest an interesting combination of a PBP, which, from my analysis, 

Charlie seemed to rely on, with operating from his FOM. He recognized that students struggled, 

but did not seem to have an alternative instructional move to “fall back on” when noticing this. 

Instead, Charlie reminded/pointed out the intended learning to students, using exploration 

activities for discovery of the mathematics along with his explanations. Upon completion, 

Charlie then expected that the students would see the mathematics that he so clearly saw 

(understood).  

Both PBP and FOM have been identified, separately, in previous work (Simon et al. 

2000, Steffe, 1992; 1995). However, my inferences from Charlie’s actions suggest a new lens, 

which combines both PBP and FOM. Charlie set up a lesson in which the students would interact 
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with the mathematics, here plotting fractions on the number line. Therefore, Charlie expected 

this would create the learning for the students via their discovery and active perception (a PBP 

move) of what he could see in the presented materials/actions. When students did struggle, and 

he noticed this, Charlie pointed out the learning or further explained it as he did with defining 

unit and non-unit fractions. However, Charlie seemed unable to work from the students’ 

understanding/struggle. Instead, I infer he worked from his FOM, which drove how he seemed to 

expect the math could also be learned by students. At this point, he did not go through a more in 

depth inquiry into why the students behaved the way they did. The mathematical understanding 

seemed, for Charlie, to be out there and something students would gain from him leading them 

via actions he seemed to believe, from his point of view (FOM), would get to the mathematics. 

This way of working with students, seen through the combined lens of PBP and FOM, will be 

contrasted below with Charlie’s focus on students’ thinking as he will juxtapose it with his own. 

Charlie concluded the mid-interview by discussing his goals and sequence for the next 

lesson (observation 2). His goal remained essentially the same – plotting non-unit fractions on a 

number line. The class would first review some work from the previous lesson (observation 1) by 

discussing how to find non-unit fractions on a number line, and then work through an example 

problem as a whole group that was identical to one of those on their worksheet from the previous 

lesson (plotting �
�
). The students would then work in small groups to plot on a number line 

fractional cards, which included both unit and non-unit fractions.  
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Figure 4.4. Charlie’s review of the previous day’s lesson, finding non-unit fractions on a number 

line with multiple choices.  

Observation 2: Charlie’s continued use of first-order model and perception-based 

perspective. The lesson (observation 2) began pretty much in the way Charlie had discussed it in 

his mid-interview. To begin the lesson, Charlie led a whole class review on how to find a non-

unit fraction on a number line. For this, he led a class discussion reminding students of the 

process for finding non-unit fractions (as implied by his FOM): first determine the unit fraction, 

then find that unit fraction on the number line, and finally repeat it the number of times indicated 

by the numerator to find where the point for the non-unit fraction would fall. For the next part of 

the lesson he moved to an example problem from the worksheet, where multiple points were 

displayed on the number line that did not necessarily line up with the non-unit fraction students 

were trying to find (four lettered points when the question was asking about sixths, see Figure 

4.4). He also revealed a number line just below the number line with the lettered points that was 

already divided into sixths for students.  
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 He asked for volunteers to come up and mark where �
�
 and �

�
 would be on the number line. 

He stated to the class that everyone would then be asked to determine what letter those marks 

represented. He called on Monica as his first volunteer to come up and show �
�
 and �

�
 on the lower 

number line. It is then, when Monica came up to the board, where the rather lengthy Excerpt 2 

begins – and shows Charlie’s FOM-based exchanges with Monica. 

Excerpt 2: Charlie’s volunteer of the marking �
�
 and 


�
 (AOP 1, observation-two, date: 

April, 2016). 

10:42 Charlie: So, I want you on that bottom number line to label �
�
 and then when you 

have done that, we are going to see which point best represents �
�
.  

10:49 Monica: (Labels �
�
 above the mark that is actually �

�
.) 

11:03 Charlie: Monica can you tell me why that point there is �
�
? 

11:10 Monica: (Inaudible, points to the 0, then the �
�
 tick mark, then the �

�
 tick mark.) 

11:14 Charlie: Monica can you point to �
�
 again for me real quick please?  

11:18 Monica: (Points, wrongly, to the tick mark at 0.) 

11:21 Charlie: Monica, keep your finger on �
�
. 

11:23 Monica: (Puts finger on �
�
 tick mark then quickly moves it back to the 0 tick mark.)  

11:24 Charlie: Ok, I want you to move your finger down a little bit, down, down, down.  

11:25 Monica: (Moves finger to the right towards �
�
 not down.) 

11:26 Charlie: Uhh, towards the ground. 
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11:27 Monica: (Moves finger towards the number 0, which is below the tick mark she 

pointed to as �
�
.) 

11:29 Charlie: K, what does that number say right there?  

11:30 Monica: (Answers, inaudible – likely saying “zero”) 

11:31 Charlie: (Repeats her answer.) Zero. That is the very start of our number line. 

That’s where we start out. We don’t have anything there yet. (Walks over to a 

different number line in class and points to the 0 mark.) That’s where our number 

line begins. When we begin our number line we begin at zero. We start at zero 

and we move onward forever and ever. (Makes a forward movement with his arm 

towards the 1 of the number line.) So Monica if this point is zero, can it also be �
�
?  

11:56 Monica: No. 

11:57 Charlie: No. Monica, do me a favor, I want you to count by �
�
 and I want you to 

label that number line for me please.  

12:05 Monica: (Labels the number line putting �
�
 at the actual �

�
 tick mark not at zero. 

Then puts �
�
 next to where she originally put �

�
 and continued to label, correctly, 

each tick mark by sixths until reaching the end of the number line, which she 

labeled as �
�
.)  

12:32 Charlie: Monica I noticed that you originally numbered, labeled this point here on 

the number line �
�
 (points to the tick mark that Monica originally labeled as �

�
 

which was actually �
�
.) But when I asked you to label it counting by units of �

�
 you 
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changed it to �
�
. Monica can you take your hands and show me on that number line 

where the first �
�
 piece is? 

12:50 Monica: (Uses two hands and brackets the piece between �
�
 and �

�
 then points 

directly to �
�
.)  

12:55 Charlie: Can you use your other hand to show me where it starts?  

12:57 Monica: (Uses two hands and brackets the piece between �
�
 and �

�
. See Figure 5.)  

12:59 Charlie: Is that the first one?  

13:00 Monica: (Uses two hands to bracket the piece between 0 and �
�
.) 

13:02 Charlie: Ok, so there is �
�
. Monica, can you show me �

�
 now? 

13:04 Monica: (Uses her hand to first bracket the piece between �
�
 and �

�
 then moves them 

to bracket the piece between �
�
 and �

�
.) 

 

Figure 4.5. Monica’s initial identification of  �
�
 on the number line.  



 93 

13:08 Charlie: K, so that is our second sixth. And can you show me your third �
�
 piece 

now Monica? 

13:12 Monica: (Uses hand to bracket the piece between the �
�
 and �

�
 tick marks.)  

13:13 Charlie: K. Monica do you see why this point here that you originally labeled �
�
 is 

in fact �
�
?  

13:23 Monica: Yes. 

13:24 Charlie: Okay.  

 Excerpt 2 shows the difficulty Monica had when trying to plot sixths on a number line 

that was already partitioned for her and Charlie’s interactions with her to help her understand and 

label the tick marks correctly. Monica seemed to understand that, beginning at the zero tick 

mark, she could count three of them, which would then equate to �
�
 because she had counted three 

(already created) tick marks on the number line, hence the tick mark at 0 for Monica was  �
�
. 

Charlie’s exchanges with Monica seemed to reflect what I inferred to be his frustration that 

Monica did not understand what he clearly could see – the tick mark at zero does not indicate a 

measurement of any fraction. This frustration seemed to lead him to attempt actively directing 

her gaze to the correct answer (see lines 11:24, 11:29, and 11:31). Such a response seems 

compatible with how other teachers, identified as operating from a PBP, have responded (Simon 

et al., 2000) – attempting to directly show the correct answer through active guidance about what 

the students needed to do. That is, when frustration grew for the teacher, he reverted to directly 

leading students’ gaze to what his FOM showed. My analysis adds to those previous studies the 

emphasis on how the teacher’s FOM seemed to underlie his frustration and the resulting attempt 

to provide the content roots for his PBP approach to promoting students’ learning.  
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This combination of Charlie’s PBP and FOM is evidenced in the exchanges with Monica. 

Monica seemed to pick up that Charlie was indicating to her she did not have the correct answer 

(see line 11:56). However, she did not seem to understand what was wrong, as indicated by her 

continued struggle to identify �
�
. Charlie’s response to this was to direct her to the correct answer, 

through directing her activity and questioning about what, his mathematics suggests, is a clear, 

correct response (see lines 11:31, 11:57, 12:32, 12:55, 12:59, 13:02, 13:08, and 13:13). He 

indicated no intention to try to determine why Monica thinks the way she does. Rather, his 

reaction indicated giving way to his FOM-based goal of directly showing to both the correct 

answer, as he understands the mathematics.  

In the post-interview, RC2 and RC3 questioned about this instance focusing mostly on 

Monica. Up until this point, through the pre-interview, observation 1, mid-interview, and 

observation 2, Charlie had repeatedly suggested that students will come to understand plotting 

non-unit fractions on a number line by a process of steps: find the unit fraction, determine the 

size of that unit fraction on the number line, and repeat that unit fraction however many times the 

numerator in the non-unit fraction requires (Excerpt 1, 1:19). This procedural description 

indicated Charlie’s FOM of plotting non-unit fractions. When students struggled, he had them go 

through the steps and provided more assistance on how to do so with his questioning (Excerpt 2, 

12:32-end). Throughout the lessons, he had tried to fit students to this process of understanding 

by having them repeat the process (or parts of the process) when they do not understand or make 

a mistake. He appeared to struggle to think about the sources for students’ mathematical 

struggles with the procedure of finding non-unit fractions on a number line, likely due to his own 

thinking of the mathematics. However, I infer that for him there was no contrast between the way 

he understood the mathematics and the way the students understood the mathematics. Whenever 
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there was a student who appeared to struggle with the task at hand, Charlie’s instructional 

response was to guide (“show”) her to the correct answer the way he understood it (FOM). This 

is about to be, for the first time, challenged through the interviewer’s questioning. 

  Charlie’s first observed juxtaposition of thinking. In Excerpt 3 (below), RC2 pushed 

the thinking of Charlie by asking him to state what, in Charlie’s recall, actually happened in the 

lesson. Building off of Charlie’s response, RC2 continued probing why, from Charlie’s point of 

view, would that student (Monica) have done what she did based on the way she understood the 

mathematics to be – not what Charlie wanted her mathematics to be. It is in Excerpt 3 that data 

show how Charlie, for the first (observed) time, considered a student’s thinking apart from his 

own (FOM), which seemed to be brought about by juxtaposing Monica’s thinking with his. To 

support such consideration, RC2 detailed the situation. 

Excerpt 3: Charlie’s juxtaposition of thinking (AOP 1, post-Interview, date: April 

2016). 

16:43 RC2: [Point] B was at �
�
 there was no, there was no point at 2 [�

�
] and there was not 

[a] Point at D. That is what I remember. But for the sake of that my memory is 

wrong, so basically, she had a line and, uh assuming the �
�
 and �

�
 are not here, this 

was �
�
 and this was [Point] A and this was [Point] B and this was [Point] C and 

[Point] D (draws on number line where each of the points were, Point A at �
�
, 

Point B at �
�
, and Points C and D further on the number line but not aligned with 

any sixth). And [Point] A was the �
�
 that was written here, right. And [Point] B 

was �
�
. And she said, you asked where would you put �

�
 and she pointed to this one 



 96 

(Point B) and the question I have is, do you have any way of thinking about, kind 

of out loud, what could have brought up her putting �
�
 here (points to �

�
)?  

17:25 Charlie: (Pause for 6 seconds.) 

17:31 RC2: From your thinking, I guess that the first question I should have asked but I 

forgot to ask it first, is at the time did you have any thinking? I assume you have 

not thought, so you are now thinking about the question, but at the time you did 

not.  

17:44 Charlie: Yeah, so, um, you bringing it up is making me sort of jog my memory, so 

I am asking her to find �
�
 and she points at [Point] B which is, sort of, clearly at the 

half way point. Umm. (Pause.) I’m, I’m trying to… 

18:06 RC2: That’s ok. 

18:07 Charlie: Think about why she would have identified that as �
�
. If she would have 

said anything was �
�
, I would imagine it to be [Point] A for the reason that I said 

earlier, it is the first point that we come across. It is one of what she might believe 

is six parts. Umm, yeah, I am not entirely sure why she would have identified this 

as… 

18:29 RC2: So, that’s absolutely fair. So, let’s take it to the next step, so the next thing 

that she did that you went into the explanation and I think that what Jodi brought 

again and other people discussed, you have this one and then we take one (points 

to the entire whole and then drawn number line referring to �
�
) and you asked her 

and she put it there (points to the zero), so in what way, what you were doing in a 
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response to a child saying this is �
�
 (points to �

�
 and Point B) what were you trying 

to accomplish with that part of your lesson? 

18:54 Charlie: I mean, I guess sort of helping her to clarify not only my explanation but 

maybe also her thinking. Um, because sitting right here, if I can’t quite determine 

why she might have thought this was �
�
 (points to �

�
). I don’t know what her 

thinking was either as to why should thought this might be �
�
. Um, so just going 

back and reiterating ok, if we are looking for �
�
, what’s the first thing we need to 

do? So, I guess asking some of those initial probing questions, to see if they are 

confident in order for what they need to do to be successful in the task. Um, at 

that point that is sort of where I was going back to. And I can’t recall off hand 

what exactly she said at that point in time. Um, had she identified this as �
�
 (points 

to �
�
) then my questioning would have been something along the lines of, alright 

well, if we are looking for �
�
 what’s the first thing that we need to do? And I don’t 

know if that is actually what was said but, I would have liked for her to have said, 

well first we need to split or partition this, what we call whole up into 6 equal 

pieces. So, and then, after we did that, then I would…  

Excerpt 3 provides an initial insight into the manifestation of Juxtaposition of Thinking I 

attribute to Charlie regarding his ability to extend his thinking beyond his FOM and into 

consideration of the student’s thinking. Charlie’s (FOM) understanding of non-unit fractions is 

based on the ability to first partition the whole into an equal number of parts, and then take one 

of those parts and repeat it in order to find the point on a number line for a given fraction. Up 

until this point, Charlie has attempted, through his instruction, to fit students to his experience of 
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knowing and learning by “getting the students to see” the mathematics the same way he does 

through his questioning and guided activities (see Excerpts 1 and 2). At this point in time 

(Excerpt 3), however, I infer that Charlie seemed to begin putting together, for himself, two 

distinct experiences; one of recalling the students’ ways of operating and the other of 

reprocessing his own way of thinking (see lines in 18:54).  

Charlie used his understanding of the mathematics (his FOM) to determine what his 

students would understand. He also seemed to assume that students, through his instruction, 

would come to understand the intended mathematical concept (here plotting unit fractions and 

non-unit fractions on a number line) the same way that he did. His FOM logic, and thus he 

expected also for theirs, would proceed through first partitioning the whole into equal parts, and 

then iterate one of those parts to determine a point on the number line. Charlie’s FOM seemed to 

underlie both how he thought about the mathematics and how he assimilated and interpreted 

student actions within class as to what he had hoped would happen. Furthermore, his FOM 

seemed to also underlie his choice of actions in response to students’ struggles. 

However, RC2’s detailing of the students’ work seemed to foster Charlie’s juxtaposing of 

his FOM with students’ responses, by encouraging Charlie to consider very specific student 

actions that did occur. Specifically, Charlie’s juxtaposition was fostered when asked why Monica 

pointed to �
�
 as �

�
. This probing by RC2 (see lines 16:43 and 18:29) seemed to foster in Charlie a 

contrast between what Charlie thought happened based on his FOM to what really happened. 

Subsequently, I inferred that for Charlie this seemed to create a juxtaposition of thinking to 

which his honest response was, “I don’t know” (silenced pause, 17:25, 18:07, and 18:54). 

Charlie seemed unable to describe how the student thought about the mathematics outside of 

what he would do, that is, outside his FOM (18:07 and 18:54). This “I don’t know” statement is 
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significant, because it indicates a novel distinction in Charlie’s thinking – between his own and 

another person’s thinking that, at this point, he could not specify. 

The researcher’s questioning prompted Charlie, seemingly for the first time, by 

emphasizing “tell me how you think” and “tell me how she thinks.” This juxtaposition my 

inference into Charlie’s thinking (not a claim of his awareness), where he seemed to move from 

“here is the correct math, and if a child does not have it, I need to provide it through actively 

showing the correct one” to possibly considering “here is the correct math, and if a child does not 

get it, I should ponder why.” That is, Charlie could juxtapose his way of thinking with a 

student’s way of thinking, which although was yet to be specified for him – seemed to him 

different in nature.  

Manifestation 1: Juxtaposition of thinking summary. In the data presented in this 

section I presented inferences of moments in which Charlie demonstrated, in response to 

researcher questioning, what seemed to be his start to distinguish students’ reasoning from his 

own FOM (distinction that does not include attribution of awareness on his part). That is, he 

began to move from a thinking of fitting students to the right answer, to thinking that students 

may understand differently, while pondering what might that understanding be. Charlie’s 

juxtaposition seemed to emerge when RC2 oriented him to think of his students’ thinking in 

ways particular to what the students did or say. Consequently, Charlie seemed to juxtapose his 

and his students’ thinking, by contrasting what he expected would happen in the enacted lesson 

and what actually happened—specifically being questioned about Monica and why, for her, her 

answers were what they were. At this point, Charlie’s inability to answer these questions 

indicated plausible lack of an SOM (e.g., saying, “I don’t know” in Excerpt 3). While specifying 

students’ thinking would be important, Charlie’s recognition of the need to specify it supports 
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the claim he began to distinguish his own FOM from students’ understandings. This change from 

Charlie answering what students should know to “I don’t know what the students are thinking” 

serves as evidence for me to answer the first question of this study. This juxtaposition of 

thinking, between a viewpoint of only FOM towards a viewpoint that the experience of the 

student may be different than the teacher’s FOM, could serve as a basis for later development of 

a recognition that a student has unique ways of operating, that is, a potential for creating a 

hypothetical model of a students’ thinking (SOM).  My inference of Charlie’s Juxtaposition of 

Thinking as part of his shift towards separating his own mathematical understanding from his 

students’ mathematics addresses the second research question of this study. 

Manifestation 2: Cogitation 

 To depict cogitation as a manifestation of a shift towards SOM, this section includes 

analysis of four AOP data excerpts. To recall, two of the key components of operating with an 

SOM are the observer’s (here, the classroom teacher) ability to create a hypothetical model of a 

student’s knowledge based on an inference from the student’s behaviors, and to separate this 

(teacher’s view) understanding from that which the student may understand. This section 

outlines how the ability to think deeply about students’ mathematical reasoning shifted for the 

teachers. That is, teachers’ cogitation regarding students’ mathematics and the hypothetical 

models they could create became more enhanced, which serves as an indication of beginning to 

create hypothetical models of students’ thinking (SOMs). The manifestation of Cogitation is 

illustrated in the following excerpts in the sense of how each participant both created 

hypothetical models of their students’ mathematics as well as separated these inferences from her 

own understanding.   
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Charlie’s cogitation. Charlie’s cogitation took place during his AOP 2, just over a year 

after AOP 1. Charlie’s AOP 2 consisted of an I-O-I-O-I. For AOP 2, Charlie taught a lesson on 

fractions to a small group of five students. For this lesson (observation 1), Charlie had two goals 

for students that he stated throughout AOP 2. First, he intended for students to explain unit 

fractions as they are related to the whole. For example, he wanted students to conceive of �
�
 as �

�
 

because the whole is 7 times as much as the �
�
 piece. In other words, �

�
 repeated 7 times will arrive 

at �
�
 or one whole. Second, he intended for students to understand that an improper fraction is 

composed of repeating a unit fraction a certain number of times. For example, �
�
 is composed of �

�
 

repeated 9 times and can be written as 9 x �
�
 = �

�
.  

It should be noted that while these two understandings reflect Charlie’s FOM, they 

include a focus on units and operations a person may be using to reason about fractions. Such a 

stance was fostered throughout the PD work with teachers in the larger project. The question was 

to what extent he would consider those units and operations apart from how he was using them. 

 During the lesson (observation 1), Charlie had students take a cube and then called that 

cube �
�
. He then had students make the whole and describe why what they made would be the 

whole. A plausible response would be that a tower made of 7 cubes would be the whole, because 

it would represent �
�
 iterated seven times, which is �

�
 and therefore one whole. Charlie then 

brought in a real-world context and asked students to think about the following problem: If I am 

selling pizzas and each of you (5 students) bought �
�
 of my pizza, how much would you buy 

altogether? The group agreed it would be 	
�
 and Charlie wrote for the group �

�
 + �

�
 + �

�
 + �

�
 + �

�
 = 	

�
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as a way of demonstrating the students’ thinking within the group. Excerpt 4 begins right after 

Charlie wrote the additive equation on the board.  

Excerpt 4: A response of Charlie’s student to repeating 

�
 five times (AOP 2, 

observation-one, date: May, 2017). 

14:29 Craig: Wait, I think there is another way to write this quicker. [Referring to 

Charlie’s demonstration of �
�
 + �

�
 + �

�
 + �

�
 + �

�
 = 	

�
.] 

14:32 Charlie: I would love it if you could write, right below that (points to �
�
 + �

�
 + �

�
 + �

�
 

+ �
�
 = 	

�
), what the quicker way is. 

14:38 Craig: Let me first look over it. (Pauses, then writes �
�
 + �

�
 = 	

�
.) 

15:01 Leon: Ohhh, that is fast. Or you could do 4 + 1, �
�
 + �

�
. 

15:05 Charlie: So we can take the 	
�
, just like what Craig did, and break it up a bunch of 

ways, right? We can say its �
�
 and �

�
. We can say its, what else did you say Leon? 

15:14 Leon: �
�
 and �

�
. 

15:16 Charlie: �
�
 and �

�
. Is there any other way we could think about that? Maybe write an 

equation that gives us 	
�
 but without using addition? 

15:26 Craig: Multiplication. 

15:28 Charlie: Craig, what would that look like? 

15:30 Craig: Hmmm, let me think about it. 

15:35 Charlie: How many times did each of you come and buy one of my �
�
 pieces? 

15:38 Group: One. 
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15:40 Craig: 5 times one… 

15:43 Charlie: Keep going. 

15:44 Craig: 5 times 1 equals 5. 

15:47 Charlie: 5 times 1 equals 5 but remember we are working with fractions of �
�
. 

15:51 Craig: 	
�
 times �

�
 equals 	

�
.  

15:56 Charlie: So be careful there, how many of you? (Points to each person in the 

group.) 

15:58 Craig: Five. 

15:59 Charlie: Five, and you each bought �
�
 so what would it be? 

16:05 Craig: Oh. 

16:06 Daisy: One times one…One times five, is five, right? 

16:09 Charlie: Hmmhmm (nods). So Craig, keep going. 

16:11 Craig: �
�
 times 5 e…equals 	

�
. 

16:15 Charlie: Perfect. Once Daisy is done would you grab the marker for me.  

16:23 Perfect. So Craig when you originally said that there’s a little faster way to write 

this, I was thinking you had caught on to this [5 x �
�
 = 	

�
�
but I love that you are 

able to see that 	
�
 can be broken down or decomposed. Remember our math 

terminology decompose, we can break it down into �
�
 and �

�
. So we call these non-

unit fractions, those are made of our unit fraction �
�
. So Craig good job seeing that 

buddy and I also love that you were able to hit on the multiplication equation as 

well. 
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Charlie’s work in Excerpt 4 contrasts with his work in Excerpt 3.  Thinking back to 

Excerpt 3 (above, within Juxtaposition of Thinking manifestation) when working with Monica 

who did not arrive at the correct answer of  �
�
, Charlie worked with her on repeating the 

procedural process to “lead” Monica to find the fraction. Later, when asked about the interaction 

with Monica, Charlie struggled to describe Monica’s way of thinking as different from his own. 

He seemed unable to even contemplate how the actions that Monica demonstrated could help 

him infer into her thinking mathematically. He seemed only able to discuss the mathematics of 

Monica through his FOM, as a process of finding a non-unit fraction on a number line as he also 

thought of the mathematics.  

In contrast, Excerpt 4 indicated a moment in class where Charlie responded differently to 

a student (Craig) who, like with Monica, did not seem to accomplish the goal of the 

understanding for the lesson. Charlie expected Craig would bring one type of multiplicative 

understanding (5 times �
�
 is 	

�
, see lines in 16:23), but instead Craig brought a different way of 

additive thinking (�
�
 plus �

�
 is 	

�
, see lines in 14:38). Charlie’s reaction during the lesson was to 

follow Craig’s suggestion and build off of it. This is important to take note of when moving to 

the next Excerpt 5, when Charlie is asked about his interaction with Craig.  

In Excerpt 5 (just below), which took place at the mid-interview of the AOP 2, I inquired 

into Charlie’s understanding of Craig’s mathematical thinking, and reasons Craig might have 

answered the way he did. Excerpt 5 depicts Charlie’s cogitation, a manifestation of a shift in his 

thinking regarding mathematical reasoning of students.  
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Excerpt 5: Charlie’s cogitation (AOP 2, mid-interview, date: May 2017). 

14:41 RC1: (Describing Craig and Charlie’s interaction during the lesson.) He [Craig] 

said 	
�
 times �

�
 is 	

�
. And you said let's be careful here. Can you talk a little bit about 

what you, what you understood Craig to be thinking at that point? 

14:52 Charlie: Yeah, so in my mind he was thinking either one of two things; so he knew 

that he had to multiply there, needed to be a 5 in there somewhere, because he 

knew he was moving from �
�
 to 	

�
. He knew there was a change in that numerator 

and we had just got done talking about how, so I'm just trying to guess, maybe, 

what was going on in his head. So he knew that that 5 had to be brought in at this 

point, that's where he got the 5 from 	
�
 and we just got done having a conversation 

about how we don't change the denominator when we're working with same unit 

fractions. So in my mind, I am just thinking, well, maybe he had that in his head 

initially, ‘Oh I need to have that 9 in there’ to make that same uniformity like 

when we are adding. So we didn't necessarily draw the distinction between, okay, 

well, when we’re adding we keep the denominator the same however the 

conversation wasn't had when were multiplying this is really 	
�
 we’re multiplying 

straight across in this case now our denominator could potentially change when 

were multiplying. That conversation wasn't had, so I feel like he was bringing in 

his knowledge of how to operate on fractions additively to doing the same thing 

now operating on them multiplicatively and I feel like he just confused himself a 

little bit at that point. 

16:31 RC1: So, any ideas why he didn't say 	
�
 times �

�
 would be would be �

�
? 
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16:40 Charlie: Why 	
�
 times �

�
 would be �

�
? 

16:43 RC1: Yeah. 

16:44 Charlie: Hmm, so he has, in my mind, he was able to switch from operating 

additively which we had just done, to operating multiplicatively. So he was 

adhering to the fact that this was multiplication. So, he was able to bring in 1 

times 5, he knew was 5, so he knew that our operations had changed at that point. 

17:11 RC1: And why not, another contrast, why not 	
��

? 

17:22 Charlie: Which is, which is what it should have been (laughs). 

17:24 RC1: Right.  

17:25 Charlie: Yeah, so that’s why I am thinking… 

17:26 RC1: So he's bringing in, and then, that's why I'm asking the question, because I 

want to get an idea and he might not of, this is like, we are reflecting now – right? 

So why not if he is thinking 	
�
 times �

�
 and he's having the switch from this 

[referring to �
�
 + �

�
 + �

�
 + �

�
 + �

�
 = 	

�
], where he knows he's not supposed to add the 

numerator…denominator here, why not, I'm just trying to get what you think he's 

thinking about. Why not 	
��

? I don't know that I've ever said that fraction before 

out loud. I don't know that I've ever thought of it. 

18:01 Charlie: I don’t think I have either, we now, we’ve got that out of the way. 

18:05 RC1: Cool. 

18:06 Charlie: So I'll go back to keeping, keeping the uniformity throughout, when we're 

adding fractions, keeping that denominator’s the same; I think he was bringing 

that piece over into this problem. However, he knew that somewhere along the 
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line the sign had changed; and I feel like he was only, since we mentioned before 

we are only operating on the numerator at this point, 6 plus 4 equals 10 is how 

they said it and then we went back six, six what's �
��

 plus �
��

 equals ��
��

 making sure 

they're unitizing it. I feel like he knew he had to do something with the numerator, 

because something with the numerator had been done over here they added it. So 

I feel like he multiplied it and then he said oh when we added, the denominator 

remained the same so I clearly must just need to put that over 9. That's the thing, I 

can’t really think of why he brought in 	
�
 as opposed to just 5 and why he didn't 

say  	
��

. 

 Excerpt 5 indicates the Cogitation manifestation in Charlie’s explanation of a child’s 

response. In thinking back to Excerpts 1-3 (Juxtaposition of Thinking manifestation), Charlie 

originally could identify a different way of thinking in Monica but not to determine why Monica 

would, for example, point to �
�
 and think of it as �

�
. In Excerpt 5, Charlie is asked regarding why 

Craig may think of 	
�
 times �

�
 as 	

�
 instead of saying 5 times �

�
 is 	

�
 (what Charlie wanted Craig to 

say). Up until this point when Charlie was asked regarding reasons for a student’s understanding 

of the mathematics (which may have not been correct), he would respond with “they forgot,” or 

“I don’t know,” or “they don’t yet understand the process which I am trying to teach them” 

(Excerpts 1-3).  

In Excerpt 5, however, Charlie could engage in an elaborated description of his students’ 

mathematical understanding. At issue here is not the correctness of his inferences; rather, it is the 

first recorded evidence he began to infer Craig’s mathematics and how that may have led Craig 

to describe the mathematics behind 5 times �
�
 equating to 	

�
. In fact, Charlie could contemplate not 
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just one but a few reasons why Craig might have thought the way that he did (see lines in 14:52). 

These included Charlie contemplating that Craig was attempting to bring what he knew 

additively into a multiplicative situation. According to Charlie, Craig knew that, in fractions, 

additive situations require not to change the denominator when working with same unit fractions 

and that the move was going from �
�
 to 	

�
 (see lines in 14:52 and 18:06). For Charlie, with what 

Craig already understood, Craig then attributed to 5 times �
�
 but confused himself at that point. 

This, I inferred, shows that Charlie is beginning to contemplate, and describe, mathematical 

thinking as it relates to the student. Charlie is attempting to make connections between Craig’s 

incorrect answer of �
�
 x 	

�
 = 	

�
 to what Craig understands – both about whole number 

multiplication and fraction addition.  

 In addition, Excerpt 5 highlighted Charlie is not depicting Craig’s thinking as a process 

of finding the answer through a series of steps. That is, he did not answer my interview probing 

into Craig’s reasoning with repeating back that if Craig did know he would understand the 

process of �
�
 repeated 5 times is the same as 5 times �

�
 (as he did with Monica and her ability to 

find and plot unit and non-unit fractions on a number line). Rather, Charlie discussed Craig’s 

thinking in terms of what Craig could do (add fractions with like denominators) and how it might 

relate to the task at hand (multiply a whole number by a unit fraction, see lines in 14:52, 16:44, 

and 18:06). His descriptions regarding Craig’s thinking are all based on how Craig might have 

interpreted the mathematics based on what Craig knows. This indicated to me that Charlie was 

cogitating about Craig’s mathematics as separated from his own and able to contemplate the 

mathematical reasoning of another person, to which I therefore attribute an initial SOM. Next, I 
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extend the depiction of the cogitation manifestation by turning to AOP data from the work with 

Sam. 

Sam’s cogitation. To contextualize the shift that Sam made towards cogitation, I am 

providing Excerpts 6a and 6b (below) from her AOP 1 (I-O-I). These excerpts provide a contrast 

against which to analyze the shift towards cogitation, which occurred in AOP 2 with Sam and is 

discussed later in this section. In Excerpts 6a and 6b, Sam is describing what she has noticed 

regarding her students’ ability to solve multiplication and division problems.  

Excerpt 6a: Sam’s description of students solving multiplication and division (AOP 1, 

pre-interview-a, date: April, 2016). 

3:54 Sam: From what I have seen, um, students have really taken on a lot of the strategies 

that we’ve been, um, practicing and uh, uh, breaking up multiplication problems 

into known facts and into equal groups or even arrays and then seeing groups in 

those. And, uh, and then I have some students who are still very, like, drawing the 

equal groups. Uh, you know, drawing out dots and circling them and that sort of 

thing.  

Excerpt 6b: Sam’s description of students solving multiplication and division (AOP 1, 

pre-interview-b, date: April, 2016). 

0:00 Sam: For this set of kids, I've noticed [when students are solving a quotitive division 

problem] that if I, if it's like they kind of tend to say, they kind of tend to rely on, 

well I know how many to put in each group and I stop when I have 15. That sort 

of thing. 

00:11 RC2: Okay. 
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00:12 Sam: But, then when you say, when you pose it in the sense that like we're going to 

have 5 equal groups or there's going to be 5 groups then they kind of have to think 

about how do I place, how am I [going to solve this], and I'm going to put one in 

each. 

00:26 RC2: So tell me if it's a fair statement, because I'm trying to get a sense from what 

you are describing that you do think about these two as different, at least when it 

comes to the kids. 

00:34 Sam: Yes. 

 Excerpts 6a and 6b provide an initial glimpse into how Sam thought about her students’ 

reasoning when it came to solving multiplication and division problems. It should be noted that 

this differentiation of reasoning between students was not specifically probed by RC2’s 

questioning. Sam brought forth her noticing how students could solve multiplication problems 

whether it be by known facts, equal groups, arrays, or drawing out dots and circling them 

(Excerpt 6a, see lines in 3:45). Importantly, she mentioned these are all strategies that the class 

has been taught. This is similar to how a PBP teacher would view the mathematics of their 

students, “I teach many different strategies and allow students to use whichever serves them 

best.” In this instance, Sam’s views of students seemed to reflect what she has shown the 

students to do in class – not a result of the students’ assimilation. 

 When discussing division (see Excerpt 6b), Sam noticed (FOM) that the two types of 

division are different when it comes to the students. She also noticed that as a result, students 

may solve these differently; counting by groups or putting one in each group until there were no 

more to be distributed.  
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The first recorded instance of Sam’s cogitation took place during her AOP 2, just over 

one year after AOP 1. For AOP 2 (I-O-I), Sam taught a lesson to her whole class on partitive 

division (givens are the number of groups and total amount, unknown is the amount per group, as 

discussed in Tzur et al., 2013). For this lesson, Sam suggested her goal was for students to 

connect multiplication and division and determine how they were related. For example, Sam 

described this as students would begin to connect that they can use their multiplication 

knowledge to help them determine how many to put in each group without reverting to putting 

the total amount into groups one by one.  

Within Excerpt 7 (below), which took place in Sam’s post-interview of AOP 2, Sam 

elaborated on what she observed during her lesson on partitive division. The focus of the class 

session was on the following task: “You have 42 cubes. You want to put the same number of 

cubes into 6 towers. How many cubes will be in each tower?” In the interview, Sam discussed 

differences among three students. Brittany solved the task by starting with 42 cubes and put one 

cube in each of the six groups until she had no more cubes to distribute. Rachel also started with 

single cubes, but then stated that she knew 7 times 5 was 35, so put five in seven groups and then 

distributed the remaining cubes by ones until she ran out of all cubes. (Note: Rachel worked with 

seven groups, not six as the problem suggested.) Finally, Dominic, drew out towers and cubes. 

He first drew out 7 towers with 6 cubes in each because he knew 7 times 6 was 42, and then, 

below that, he drew it out again with 6 towers and 7 cubes in each.  

Excerpt 7: Sam’s cogitation (AOP 2, post-interview, date: May 2017). 

6:17 RC1: Okay, so how do you categorize all of that thinking? What do you think is, 

um, like mathematically, were they successful at the goal you wanted them… just, 
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we will just use those three examples [referring to Brittany, Rachel, and 

Dominic]. 

6:34 Sam: Um. Yeah, so if I were to rank them in, like their understanding, I would rank 

Brittany and then Rachel and then Dominic. Um, Brittany, and even when we 

worked down here on the carpet, was having trouble thinking outside the box of 

ones. She pushed herself to do 3 in each [group] when it was supposed to be, 

when it was 6 in each [group] down here (pointing to the carpet). Um. So she's 

pushing herself to [even] think, “Oh I could put more into each group.” 

7:02 RC1: Instead of ones? 

7:03 Sam: Instead of ones. But, she wasn't quite catching on to, like, and I don't think I 

did a good job of making it clear, how and why we were using anyway… So she 

was operating on ones. Um, and then, I would say that by thinking about the fact 

that I knew that [Rachel said she knew] 5 groups of 7 is 35. So I can start there 

and then figure how many I have left and divide those up, would be the next level 

of understanding to me. And then Dominic, um, you know, I see a lot of kids 

when we were doing this um, a while ago or I asked him to represent their 

thinking... 

7:52 – 8:55: (Sam responds on phone call to student end of day departure question. Then, 

she resumes the discussion of the third child, Dominic.) 

8:56 Sam: So, Dominic when he, he knew that he could multiply by 6 and that, that 

would get him [42] and then he stopped at 42 and he realized that he had 7 towers. 

And then I see a lot of kids stop there and say okay its 7. But I, then my question 

to them is okay you have, the way you represented it you have 6 in each and then 
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you have 7 towers, but the information that we were given was that there were 6 

towers. So kind of like, have them think about that. Where he then, that would 

normally be where I would like push them to think about, okay maybe I'm onto 

something but is what I'm doing really showing the units where they are, what, is 

it really, figurally, showing the correct units where they should be. And he got to 

that 7, 7 towers and then he flipped it and he knew, and I had never spoken to him 

about doing that or anything [and] he knew then to go back and do one tower of 7 

was 7 and go up to 6. 

Excerpt 7 indicates how Sam’s cogitation regarding her students’ reasoning shifted in the 

sense of her ability to make inferences. I see two main points as important. First, in contrast to 

the previous year (Excerpts 6a and 6b), I infer that Sam’s assimilation of students’ work included 

recognition of her students’ mathematical reasoning outside of what she has taught them (her 

own FOM). In thinking about Excerpts 6a and 6b, Sam was initially able to describe what she 

observed students doing based on strategies she had taught to her students. This was illustrated 

by her descriptions of how students solved multiplication and division problems. She noticed 

students doing different things such as drawing all dots and counting them or repeatedly adding 

until reaching the total. In Excerpt 7, Sam does not relate the strategies she has observed to 

something that she has taught the students. In fact, she stated she recognized Dominic reasoning 

in a way that she has never discussed with him before (see lines in 8:56).  

Second, I infer that Sam seemed to have gained the ability to think about her students’ 

reasoning based on the units and operations each of the students might have been using to think 

about and solve the problem. She inferred Brittany operated by putting one in each group; Rachel 

began with a group of 5 and then changed to operating on ones; Dominic used his multiplication 
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understanding of 7 groups of 6 to determine what 6 groups of 7 would be. This description, in 

spite of whether the inferences are consistent with an expert’s inferences or not, is something that 

up until this point Sam had not demonstrated. They suggest Sam was cogitating students’ 

mathematical thinking in terms of the units and operations students are using (instead of referring 

to FOM strategies she taught to students to arrive at the correct answer). 

Manifestation 2: Cogitation summary. In the three excerpts presented in this section 

both Charlie and Sam demonstrated an enhanced ability to contemplate their students’ 

mathematical reasoning, which I inferred based on their observations and inferences into their 

students’ understanding. This enhanced ability to contemplate students’ mathematical reasoning 

(cogitation) serves as evidence in addressing the second research question of this study.  This is 

indicated in each teacher’s discussions of not only what their students did in class but also of 

hypothetical models of what these observations might mean for the student as separated from the 

teacher’s own understanding or what they believe the mathematics to be. For Charlie, this is 

found in his description as to why Craig originally thought 	
�
 times �

�
 was 	

�
. For Sam, this is 

found in her discussion of types of students’ solutions and what each solution means in terms of 

the similarities and differences in thinking with units and operations. These changes in Charlie 

and Sam’s explanations of their students’ mathematical activity serves as evidence in addressing 

the first research question of this dissertation study. 

Manifestation 3: Distinction 

In this section I present four excerpts to depict the manifestation of Distinction. Key to 

SOM is the ability to make inferences about available schemes and evolving schemes a learner 

may have. To shift towards SOM, those making the inferences must be able to distinguish 

between their own mathematics and the mathematics of others. Manifestation 3, Distinction, 
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captures this shift, as teachers begin to infer into their students’ mathematical thinking through 

making distinctions in two ways: between one student’s mathematical reasoning and another’s 

mathematical reasoning, and between possible inferences of mathematical understanding within 

one student. Both way encompass teachers’ distinctions between their own mathematics and the 

students’ mathematics.  

Charlie’s distinction: Part-A. Excerpt 8 (below) is taken from Charlie’s post-interview 

of AOP 2. It highlights Charlie’s distinction regarding the mathematical reasoning of multiple 

students. If thinking back to the initial excerpts presented (Charlie’s Juxtaposition of Thinking, 

Excerpts 1-3), Charlie was not able to describe his student’s thinking apart from his. In Excerpt 

8, Charlie discusses his inferences into mathematical reasoning of his students as he gleaned 

from a formative assessment students took earlier in the day. The assessment, which Charlie 

himself created, contained the following questions: 

1.� Complete the pattern: 4, 8, 12, ______, ______, _____, _____ 

2.� If each pizza has 4 slices, how many slices would you have if you ordered 3 pizzas? 

a.� What if you ordered 6 pizzas? 

b.� How many ore slices will you get by ordering 6 pizzas as opposed to 3 pizzas? 

c.� What fraction of a pizza is 1 slice? 

Excerpt 8: Charlie’s distinction part-A (AOP 2, post-interview, date: May 2017) 

15:15 RC1: So, from this (points to the assessment worksheet), what did you, kind of see 

with the students in their reasoning? 

15:23 Charlie: Um, so sort of a little all over the place. Again, I mean, it was sort of 

confirming to me that Craig sort of got it. Um, I did make some notes down here 

that I don't know how important it is, but when he was figuring out how many of 



 116 

those slices he would have if he ordered six pizzas [referring to question 2a], he 

did end up using a count-all strategy. I physically saw him counting each and 

every one of these and there are the pencil marks on them and he was one off; but 

he didn't have the ability to self-assess and see that this is actually four slices split 

up over six pizzas, which should have been…so he also used the wrong operation 

looking at it. How many slices will you get ordering six pizzas as opposed to 

three? [referring to question 2b.] He turned it into an addition problem as opposed 

to a difference problem. Which actually, everybody did. They all turned it into an 

addition problem as opposed to a difference problem um, which wasn't a huge 

concern at that point. Again, that was more for my own record-keeping but um, it 

confirmed that for the most part they do have skip counting [referring to work 

done for questions 1 and 2 together]. 

16:35: A couple of them got a little tripped up, if we looked at Noel she started 

skip counting by 8s [referring to question 1]; however, she did do so accurately 

and I'm curious whether or not she just missed the 8 between the 4 and the 12 or if 

for some reason she honed in on the 8 and started thinking that that was in some 

way the indicator of what she needed to continue skip counting by. Um…and I 

guess she was the only one that didn't have that.  

17:06: And then moving into the double-counting for the most part they were all 

able to get the initial problem right as far as how many slices were in three pizzas 

[referring to question 2]. There was a bit of a struggle when it came to six pizzas 

and again Noel, she put 36 [referring to question 2a and its relation to the skip 

counting required also in question 1]. So, in my mind, that shows that she knew 
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that she had six groups here that was going to be the sixth number that she said in 

her counting number sequence. Which I thought was great, even though she didn't 

continue the pattern correctly. She didn't continue counting by 4s. So, I put a little 

question mark for her there. I feel like had we gone back and taken the time to say 

remember what we were skip counting by, what comes after 12 if we continue 

this pattern, which is why I brought the cubes back in at the end again. For her 

and for Antonio who had initially gotten a little tripped up on this problem 

[referring to question 2 and 2a]. I thought having these (points to the cubes) in 

front of them would sort of solidify, oh, we were skip counting by fours that's 

why I asked how the pattern was changing every time. We added another pizza or 

tower in this case.  

18:06: Um, Leon is operating multiplicatively here, which is great [referring to 

question 2]. He is able to, without, I am assuming, I asked him to show his work, 

so I'm thinking he might-of added this on separately. However, I wasn’t watching 

him. However, it does look like he did go through with a pencil and count some of 

those individually but the fact that he's able to create the equation from it, I think 

is really supportive. 

18:34: And then Antonio, sort of (sigh), my odd one out. Um, I think he originally 

got confused as, with pizza and slices [referring to question 2] at this point which 

is something that we saw yesterday and even today when he was talking about the 

individual unit fraction as opposed to the whole, he was getting tripped up on that 

comparison. Which it looks like I see here again today, instead of 6 pizzas I think 

he had attempted here to create 6 slices in those original 3 pizzas [referring to 
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question 2a]. Even though some of them look like they're split up into eighths. 

But the fact that he came up with 30 um, throws me for a bit of a loop. He was 

able to do so successfully here 3 pizzas, 4 slices [referring to question 2]. He's 

able to accurately say 4, 8, 12 slices. Here I'm not totally sure what he did, unless 

he did end up splitting these into eighths…8, 16, 24 and then he wrote the 6 down 

here to help him remember that there are six slices per pizza and then added that 6 

onto the 24 to get 30. I don't know but I think he definitely did something here to 

trip himself up and he's definitely not seeing the difference between the unit that 

we are operating on and the whole at least at this level.  

 This excerpt (8) highlights Charlie’s ability to make distinctions in his students’ 

mathematical reasoning. Two points seem of importance. First, he distinguished among four 

different students and the reasoning they have based on the work they have done: Craig using a 

count-all strategy (see lines in 18:34); Noel counting by 8s instead of 4s but doing so accurately 

(see lines in 16:35 and 17:06); Leon thinking multiplicatively with an addition equation, however 

seems to have counted individually (see lines in 18:06); and Antonio struggling to determine 

what to count by essentially getting confused with the pizza and the slices (see lines in 18:34).  

In addition, Charlie is able to infer into reasoning of other students regardless if they have 

arrived at the correct answer, and compare that thinking to other students who also did not arrive 

at the correct answer. Charlie stated quite early on that all students turned 2b into an additive 

problem instead of a difference problem (see lines in 15:23). Yet, he was able to infer into the 

way that students skip counted in the problems leading up to that problem. His insight into 

Noel’s reasoning shows he made distinctions in how she was counting and what her 

mathematical reasoning may have been as she was answering the questions: “So, in my mind, 
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that shows that she knew that she had six groups here that was going to be the sixth number that 

she said in her counting number sequence. Which I thought was great, even though she didn't 

continue the pattern correctly (17:06).” Charlie seemed to have shifted from this previous way of 

thinking – from little to no description of student thinking to being able to think about his 

students’ mathematical reasoning and begin to compare how that thinking may differ from other 

students. Importantly, he is able to do this whether students got the right or wrong answer. 

Charlie is making distinctions of similarities and differences of the mathematical reasoning 

(SOM) from one student to another student in the class, which includes juxtaposing.  

Second, based on the distinctions between students, Charlie seemed able to also 

distinguish between his own mathematics (FOM) and the mathematics of others (SOM). Charlie 

still struggled slightly, making a few statements like, “I am not sure” or “I don’t know.” 

Nevertheless, he attempted to make conjectures as to what the students were thinking. Charlie’s 

thought process while considering Antonio’s work and mistakes is an example of this: “Here I'm 

not totally sure what he did, unless he did end up splitting these into eighths…8, 16, 24 and then 

he wrote the 6 down here to help him remember that there are six slices per pizza and then added 

that 6 onto the 24 to get 30” (18:34). I infer that, at this point, Charlie is beginning to make 

distinctions about the mathematics that students may use as different from the way that he thinks 

about it. This is contrasted with his earlier work, where his own thinking seemed to serve as the 

main point of comparison. His struggle indicates he is pondering students’ thinking about the 

mathematics differently than he understands it even though he may not be fully able to determine 

what that difference is.  

 Charlie’s distinction: Part-B. Excerpt 9 (below) brings a different distinction made by 

Charlie. During his AOP 2 (observation 1), Charlie asked Antonio: “If you have �
�
 and you take 
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away one whole, what would be left?” To this, Antonio replied that he would have taken away �
�
, 

to which, Charlie, during the observation, immediately moved Antonio to work with the cubes 

and explain his answer. Charlie told Antonio that each cube represented �
�
 and asked Antonio to 

build the whole for him with the cubes.  

In the mid-interview, I asked Charlie to talk a little bit about why, with Antonio, he made 

the instructional move to working with the cubes. It is here, where Charlie manifested making 

distinctions of mathematical reasoning within a student.  

Excerpt 9: Charlie’s distinction part-B (AOP 2, mid-interview, date: May 2017). 

23:01 Charlie: So, in my mind, I wanted to see if he was saying I'm taking away, in his 

(Antonio’s) mind, if he's thinking the whole is �
�
 or if he was already able to do in 

his head, oh okay we just talked about one hole is a �
�
. If I take that away from �

�
 

and I'm left with �
�
. So, the answer he was giving me and the question that I was 

asking didn't necessarily lineup, but I was curious as to whether he knew that this 

�

�
 that he said right off the bat, was what it was going to be left with once he took 

the whole out. Um, when the question I was really asking was if we were to take 

one whole away, how many eighths we would be taking away. So, I wanted to 

actually put something in front of him where actually he could build it and then 

take that whole away to see if he knew that one whole was �
�
 and then he could 

say okay here is one whole; I'm left with this one piece, this one extra eighth; and 

see if he could then make the connection that it's one whole and �
�
. So, in my 

mind, I was, by giving him the cubes, I was sort of differentiating whether he was 



 121 

thinking, knowing that he would be left with a �
�
 piece after taking �

�
 away or if 

when I said what would it look like to take one whole away from that if he was 

thinking �
�
 was the same as one whole. So, if he was getting the whole and the unit 

fraction mixed up. 

24:29 RC1: And you feel like, so then he went on to, you said how many wholes is this 

(holding up the towers of 8 cubes) and he said eight and he actually said it twice. 

So, do you feel like that was something that you, it, when you're trying to 

understand if it was one eighth or he already done it, do you feel like that he, how 

do you feel he actually understood it? 

24:52 Charlie: So, the fact that I said what would, the fact that when I said what would it 

look like to take away one whole he said �
�
 and then I said well how many wholes 

do we have here. The fact that said that he said eight again is showing me that he 

is seeing this unit fraction of �
�
 (holds up one cube in right hand) as a whole. There 

is a disconnect there between the unit fraction and the whole. So, he is seeing this 

[�
�
] as our whole (holds up one cube in right hand and puts it down) instead of this 

as our whole (holds up tower of 8 cubes in left hand and puts it down).  

 Excerpt 9 shows my inference into Charlie’s ability to make distinctions of different 

mathematical reasoning within one student. Charlie goes back and forth between trying to 

determine if Antonio’s understanding is that one whole is �
�
 and when taken away from �

�
 that 

there would be �
�
 left, or if Antonio was thinking that �

�
 was the whole (see lines in 23:01). 

Charlie is focused on inferring into Antonio’s reasoning as a result of what Antonio attended to 

in answering Charlie’s question (see lines in 24:52). Consequently, he determined that, for 
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Antonio, there is a disconnect between understanding the unit fraction and its relation to the 

whole.  

I infer that Charlie separated the way he understands the mathematics (his FOM) from 

Antonio’s. This is exampled by Charlie not attributing his process and reasoning to Antonio’s 

thinking by stating “if he did have it” or “in my mind Antonio should…” in Excerpt 9 above. 

Charlie, instead, is indicating an SOM of Antonio and making distinctions within that SOM 

between two potential ways of reasoning based on his observations (understanding �
�
 as 

something that would be left or something that would be taken away).  

In summary of Excerpts 8 and 9, I see them as examples of how Charlie’s shift towards 

SOM involved making more specific distinctions between his own understanding and the 

students understanding, student to student reasoning, and within student reasoning. These 

distinctions illustrated Charlie’s growing ability to infer into a student’s conceptions and how 

that might differ from his own understanding of the mathematics (FOM). Like Charlie, Sam’s 

ability to make distinctions regarding her students’ mathematical reasoning also seemed to shift.  

Sam’s distinction. Sam’s first observed indication of distinction took place at the very 

beginning of her post-interview of her AOP 2 (Sam’s Distinction will be analyzed using both 

Excerpt 7, above within Cogitation, and Excerpt 10, below). As described within the Cogitation 

manifestation, for this observation Sam taught a lesson on partitive division. She gave her 

students the problem of: “You have 42 cubes. You want to put the same number of cubes into 6 

towers. How many cubes will be in each tower?” While students were working on the problem 

she moved about the class and observed their work, as well as asked some students questions. 

Interestingly, Sam independently brought her reflection on this experience right at the beginning 

of the post-interview and her observations during the lesson.  
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Excerpt 10: Sam’s distinction (AOP 2, post-interview, date: May, 2017). 

00:52 RC1: Talk to me a little bit about how you think the lesson went. 

00:54 Sam: Um, well I didn’t at all get to, like, what I had intended to, kind of, and um, 

well, I did, but I didn't. Like, it went in a weird way that I didn't expect. I kind of 

just went with it. And so, um I saw kids when I gave them, um, a chance to go 

back to their seats and work with the manipulatives or represent their thinking 

[regarding the problem of 42 cubes and putting them into 6 towers], um, I kind of, 

just working at the one table that I did, I saw three things happen. I saw one 

student, um working on, working with just, like you, one, working with ones. 

Like breaking up the pile of cubes into ones, the 42 cubes. And then, um, I saw 

another student start with 5 in each. I saw Chloe do that down here too or um, 

Diana. And then just add on what had then, then by ones, the remainder that they 

had. And then I saw Dominic who went back to drawing towers and, um, cubes in 

each, and he originally started with 6 in each because it was six towers but he 

drew out, he drew six and each and then he got to seven towers and a total of 42 

and he knew that even though that got him to his answer that he had sort of like 

represented the units incorrectly and then went back and flipped it. So, when I 

spoke to the student who put 5 in each she said well I knew there would be at least 

5 in each because I knew that 5 groups of 6, 5 groups of 7 were 35 is what she 

told me. 

In thinking back about Excerpts 6a and 6b, Sam was able to recognize different solution 

strategies from her students based on what she had taught (her FOM). She seemed unable to use 
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these observations as evidence for how students understood the mathematics different from what 

she had taught them. In this sense, I infer her observations of students were based on her FOM.  

In Excerpts 7 and 10, however, it appears this mindset has shifted in that Sam is making 

distinctions among students’ reasoning. Specifically, she is comparing the three students and 

seems to have gained ability to rank those students’ strategies as indicating different levels of 

conceptualization – as opposed to all of the students having the correct answer therefore the 

same thinking, regardless of how they got there (Excerpt 7, see lines in 6:34 and 7:03). In other 

words, Sam begins to attribute what she observed students do differently to different types of 

thinking for each student and therefore different levels of mathematical understanding that were 

pertinent to them. Sam was able to discuss why Brittany, Rachel, and Dominic would be ranked 

from highest to lowest understanding.  

In addition, Sam seems to begin to generalize other students’ reasoning and categorize 

them based on these three exemplars of conceptualizations (Brittany, Rachel and Dominic). This 

is indicated in Sam’s comparison of Diana to Rachel (Excerpt 10, see lines in 00:53). This 

generalization of an SOM to other student responses can be considered her initial creation of 

what could become epistemic subjects (Piaget, 1966; Ulrich et al., 2014). This serves as evidence 

Sam is further making distinctions of students mathematical reasoning beyond just the three 

initially discussed students.    

Manifestation 3: Distinction summary. In the four excerpts discussed in this section (7-

10), both Charlie and Sam displayed an improved capacity to make distinctions in their students’ 

mathematical reasoning. I infer Charlie and Sam to have manifested an improved capacity to 

make distinctions in their students mathematical reasoning, which serves as evidence in 

addressing the second research question of this study. Charlie indicated he was able to 
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distinguish between mathematical reasoning from one student to another and also to contemplate 

mathematical reasoning a student may be having between two different types of thinking. Sam’s 

distinctions indicated she was moving away from “the students do these strategies as a way of 

what was taught to them” to “they do these strategies because of the mathematics that is 

available to them and that is an indication of their level of understanding.” Critically, Sam’s 

distinctions allowed her to rank student understandings and begin to place/categorize other 

students within this ranking. Hence, both teachers’ distinctions allowed them to create 

hypothetical models of what their observations might mean in terms of the student’s 

mathematical reasoning as separated from their own understanding or what they believe the 

mathematics to be. The hypothetical models described by teachers indicate a change in their 

ability to explain their students’ mathematical reasoning outside their FOM, and thus serve as 

evidence in addressing the first research question of this study. 

Manifestation 4: Mindfulness 

 In order to create instructional environments where teachers can infer into the SOMs of 

students, instruction needs to facilitate interactions where the students are able to structure their 

own activity based on what they know – as opposed to interactions where the activity is 

structured based on what the teacher’s FOM entails students should do and demonstrate 

correctly. In other words, a teacher who operates with an SOM and FOM encourages students to 

bring their reasoning to learning situations and then to structure their learning accordingly. This 

is in contrast to a teacher who only operates from an FOM and creates an activity and engages 

students in it regardless of what students can assimilate. The manifestation of mindfulness 

indicates this inclination in teaching. A shift in mindfulness seem to gravitate from a mindset of, 

“if students do this then I will do that,” to beginning to incorporate, “I wonder what this student 
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is thinking and how can I use instructional time to infer and facilitate learning based on my 

inferences.” With both Charlie and Sam, their mindfulness around the goal and intended plan of 

teaching seemed to undergo such a shift. In place of thinking, “my students will understand the 

math as I do, so if they do anything other than that I will assume the students did not get it and I 

will reteach,” they seemed to think, “I need to figure out what the students do know, so that I can 

then facilitate a plan for teaching that can accommodate that learning.” Below, I provide further 

data and analysis of Charlie’s and Sam’s mindfulness. 

Charlie’s mindfulness. In Excerpt 11 (below), Charlie described a learning situation 

regarding AOP 2 (observation 1), and how he would have liked the lesson to have gone 

differently than it did. In the lesson, Charlie was working to help students understand �
�
 could 

also be thought of as 1 and �
�
 and as �

�
 repeated nine times. Charlie did this by having a student 

repeat the unit fraction of �
�
 in Fraction Bars (Kaput Center, University of Massachusetts, 2016) 

on the board for all the students in the group to see. While repeating the �
�
 piece, the students 

stated how many of the �
�
 pieces are represented. For example, �

�
, �
�
, �
�
, and so on until reaching �

�
 

at which point the students also said, “or one whole”. Charlie then stopped the repetition of the �
�
 

pieces and asked the group of students: “What if we were to repeat that ��
�
] one more time? What 

if we didn’t stop? What fraction would we be left with at that point?” Students responded to 

Charlie with �
�
 instead of �

�
.  

In the AOP 2 mid-interview, after observation 1, Charlie discussed how he would rather 

not have stopped at one whole or �
�
 and just kept going to see what the students would say. I 

inquired into Charlie’s reasoning about this erroneous response given by students. 



 127 

Excerpt 11: Charlie’s mindfulness (AOP 2, mid-interview, date: May, 2017). 

20:10 RC1: How would that have changed the situation? [If the student would have kept 

repeating �
�
 past �

�
 rather than stopping at  �

�
.] 

20:12 Charlie: Um, so, they [the students] started saying, like, I can't even remember 

what it said, but I feel like it was something along the lines of, like, a ninth, 1 and 

�

�
. So, I feel, like, had they kept going with what we had been originally doing, �

�
 + 

�

�
 + �

�
 , counting by ninths up until �

�
 or up until, I'm sorry, �

�
, I was curious to see 

what would come right after  �
�
. If they would have kept going with that counting 

scheme �
�
 or if they would have said to themselves �

�
, ok that's a whole, there's 

something else after that, that's an extra �
�
 so that's 1 and �

�
. I was just curious to 

see how they would count that piece afterwards. And I feel like the visual up there 

[fraction bar on the board] would have been a little helpful especially for someone 

like Antonio and I believe Daisy who even started to change it into 1, like 1 and �
�
. 

I feel like she changed it to ninths because we now have 9,  

21:15 RC1: Yeah, she said �
�
, yeah… 

21:16 Charlie: In her mind there were now 9 pieces up there. She had that one extra piece 

so in her mind that was one of those nine pieces that were now up there on the 

board. So, I feel, like, that's where she got �
�
 but I feel like it would have been 

helpful, I also wanted to go back and figure out when we first pulled it out [the �
�
 

piece from the whole bar], ask the question what is this piece? To see if they 

could tell me �
�
, and then from there I wanted to label and repeat it. I tried to do 
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that afterwards with Craig but it didn't work out, going back a labeling. But I feel, 

like, had we had that �
�
 and talked about repeating it once they got to �

�
 it would 

have been a little easier for them to say oh �
�
 I'm just adding on one more �

�
 piece 

and I have an extra 8th, �
�
. And then the idea was to work backwards from there 

using that visual which never got up on the board (laugh). 

Excerpt 11 was selected to highlight my inference of Charlie’s enhanced state of being 

aware of his teaching moves within a lesson. In thinking about Excerpts 1-3 under the 

Juxtaposition of Thinking manifestation, Charlie’s way of reasoning through students who had 

difficulty understanding was to repeat the process/steps of how a unit fraction would be found. In 

Excerpt 11, however, Charlie seems to provide his own lens of analysis on his instruction and 

how it should have gone in order to elicit more of what the student brings to the learning 

experience. Specifically, Charlie stated he would have liked it to go differently by not stopping at  

�

�
 (see lines in 20:12) and also have students initially diagnose and label the  �

�
 piece (see lines in 

21:16).  

This sharing of the desire for the instruction to have gone differently, and his description 

of what he conjectures this may have brought for students’ thinking, alludes to his growing 

propensity (hence the term mindfulness) for bringing forth what the students know to a learning 

situation (see lines in 20:12). This mindfulness seems to underlie his questioning what might 

have happened had he continued with the action of repeating the unit fraction of �
�
 past the whole. 

Charlie’s mindfulness around his teaching and instructional moves showed he no longer wanted 

the students to simply repeat the process of counting unit fractions. Instead, he wanted to provide 

activities that allow him to understand what the students could reason and would say (see lines in 
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20:12 and 21:16). With this intended instructional shift of allowing students to bring what they 

know to learning situations, Charlie can have more opportunity to determine the SOM of his 

students. Sam’s mindfulness, while seemingly not as developed as Charlie’s (I explain this 

comparison after the excerpts), also indicates a shift in the way she intends her instructional 

activities to play out. 

Sam’s mindfulness. The following two excerpts (12 and 13) serve as examples of Sam’s 

mindfulness. Excerpts 12 and 13 took place during Sam’s AOP 2 within the post-interview. In 

this post-interview, Sam discussed how she thought the lesson went and different solutions she 

observed students using when trying to solve the task, “If 42 cubes are placed equally into 6 

towers, how many cubes in each tower?” (lesson described in the Cogitation and Distinction 

manifestations). During parts of the interview, Sam seemed to struggle with how to facilitate 

learning situations in which students could bring what they knew as opposed to Sam telling them 

how to do mathematics based on the way she understood it.  

Excerpt 12: Sam’s mindfulness (AOP 2, post-interview, date: May, 2017). 

4:13 Sam: Okay, ehhhhhhh, it’s, like, really hard because you are just seeing what’s in 

front of you. And then you have to make a game-time decision. And so, like, I’m 

good with that when I have a thorough understanding of the content and what I’m 

doing, but, like, when I have this lesson where I’m, like, okay it’s going to go like 

this. I hope it goes like this because if it doesn’t and then I, so I, with content that 

I’m still a little rurrururu (makes and uneasy sound), like I have an idea but then 

once it goes places, my brain goes, like, crossfire. So, go ahead (looks at RC1 for 

more questions regarding the lesson). 
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 Later in the interview, Sam brings again this conundrum she is experiencing when talking 

about her interactions with one specific student.  

Excerpt 13: Sam’s mindfulness (AOP 2, post-interview, date: May, 2017). 

10:59 Sam: And I said what kind of, what did you do up here then that’s where my brain 

like doesn’t know how to, like, clearly, like, probe them to think about the 

connection that they made. And I said, okay, I saw you do some math that, 

represents your thinking and in a way that we have been working with for a long 

time now. So, can you, kind of, tell me what kind of math you were doing to help 

you figure it out? And he said multiplication.  

I consider data in Excerpts 12 and 13 to indicate that Sam’s mindfulness was not as 

developed at Charlie’s, in that she was not able to specify how she would have preferred the 

lesson to change. Rather, she seemed to be just developing an idea that her instruction should 

shift from a mindset of, “provide strategies so that students can pick one” to a mindset of, “let the 

students do what comes to them and then work with them to facilitate a more advanced 

understanding.” Said in another way, I infer she is aware that the way she went about her 

instruction needed to change in order for students to bring their own mathematical reasoning to 

the activity. However, I also infer that Sam was not sure how to change it, as indicated in her 

constant struggle with determining “game-time decisions” and admittance of it being really hard 

(Excerpt 12, see lines in 4:13).  

Manifestation 4: Mindfulness summary. In Sam’s and Charlie’s shift towards SOM 

they manifested growing mindfulness about their teaching practices. My inference on the 

manifested mindfulness of the teachers’ instructional practices serves as evidence in addressing 

the second research question of this study. Both teachers seemed to move away from trying to 
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direct students to the mathematics that they themselves understood, that is, their FOM. Instead, 

Sam and Charlie were attempting to understand the students’ thinking from the students’ point of 

view, so they could cater their instruction to that thinking. Charlie’s mindfulness seemed more 

advanced than Sam’s. He was able to not only reflect on his moves but also describe how he 

might have changed them to gain better insight. For Sam at this point, it was still just a 

separation between what she should do and what she can do with description of how it is hard for 

her.  

In Summary �

In this chapter, I analyzed data of teachers’ shift in explanations of their students’ 

mathematical behaviors, from being based primarily on the teachers’ mathematical knowing 

(FOM) to also attributing mathematical knowing that differs from that of the teacher (SOM). 

Within the analysis, I focused on teachers’ ability to describe the mathematical reasoning of their 

students as different from their own and as compared to other students within the class. This 

focus yielded my distinction of four manifestations:  

 Manifestation 1 – Juxtaposition of Thinking: Teachers experienced a contrasting effect 

when comparing their own FOM mathematical experience with a student’s different 

mathematical experience.  

Manifestation 2 – Cogitation: As teachers shifted towards SOM they were able to think 

more deeply about their students’ reasoning. 

Manifestation 3 – Distinction: A shift in teachers’ inclination to describe their students’ 

mathematical reasoning not based on their own understanding but based also on the 

mathematical behaviors and explanations of their students was rooted in a greater ability to make 

distinctions in their students’ mathematical understanding. A teacher was able to describe 
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similarities and differences in students’ mathematical reasoning and compare those similarities 

and differences to the teacher’s own understanding, to the understanding of other students, and 

even to different mathematical understandings of one student.  

Manifestation 4 – Mindfulness: A shift towards SOM included teachers showing thought 

in how instruction should change from “I tell the math” to “I look for opportunities to understand 

my students’ thinking so I can build on those understandings.” Teachers began to indicate 

propensity for instructional moves they could make in order to bring what I would consider 

students’ assimilation as a way to interpret SOMs of their students.  

�
 
�
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CHAPTER V 

DISCUSSION 

 This dissertation study addressed the following questions:  

1.� What changes can be noticed in elementary teachers’ explanations of their students’ 

mathematical activity as teachers shift away from mostly relying on their first-order 

models (FOMs) to teach mathematics? 

2.� What may be manifested in elementary mathematics teachers’ work and explanations, as 

they shift from using only first order models towards differentiating between their first 

order model and students’ mathematical reasoning? 

I collected data on two participants who underwent professional development geared towards 

Student-Adaptive Pedagogy (Steffe, 1990; Tzur, 2013). These data consisted of video recordings 

of the teachers’ participation in professional development (workshops, summer institutes, 

Buddy-Pair sessions) and in Accounts of Practice Sets (AOPs, see Chapter III, Methodology). 

 In Chapter IV, the data analysis yielded four manifestations that emerged as teachers 

shifted in their ability to explain their students’ mathematical behaviors based not only/mainly on 

their own mathematics (FOM) but also on the mathematics students bring to the learning 

situation (FOM and SOM). Those four manifestations are: 

Manifestation 1: Juxtaposition of Thinking. Teachers begin to realize that students’ sense 

of learning situations are different from the teacher’s experience or what the teacher assumes the 

experience to be for the students. This manifestation, in turn, seemed to allow the teacher to 

interpret a student’s understanding from the lens of both an FOM and SOM.  

Manifestation 2: Cogitation. Teachers begin to indicate an ability to deeply think about 

their students’ mathematical reasoning as separated from their FOM.  
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 Manifestation 3: Distinction. Teachers begin to indicate an ability to make distinctions 

about their students’ mathematical reasoning. This ability includes two main distinctions: (a) 

students’ distinguished from other students’, and (b) possible distinctions made within a student. 

Both distinctions include the teacher’s separation of her own mathematical understanding from 

the learners’ mathematics. 

 Manifestation 4: Mindfulness. Teachers begin to indicate an ability to consider and 

reflect on their mathematical instruction, including the intention to foster learners’ construction 

and advancement of the learners’ own mathematical reasoning and mental operations (not the 

teacher’s). In other words, teachers shift towards a mindset that allows instruction to build on 

and promote students’ assimilation of tasks that are accessible to the students and possibly lead 

to the intended learning.  

 In this final chapter, I discuss key contributions of my study, its implications for practice 

and future research, and its limitations. 

Key Contributions of this Study 

 By examining how teachers’ shift towards SOMs of their students’ mathematical 

thinking, this study aimed to create a foundation for understanding, and fostering, teacher 

learning to identify student existing mathematical understandings and promote further advances 

in students’ mathematics. In this section, I examine five main implications for research regarding 

teachers’ shift towards SOM. First, I consider existing research on Perception Based Perspective 

(PBP) and FOM and the important link between the two that can be derived from my study. 

Second, I explain the importance of the four manifestations for fostering a shift in teachers’ 

perspective of learning and knowing towards Conception Based Perspective (CBP) (Simon et al., 

2000) and use of Student-Adaptive Pedagogy (Steffe, 1990; Tzur, 2013). Third, I elaborate on 
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how the four manifestations distinguish facets of what has previously been termed SOM. Fourth, 

I discuss how the findings of this study may be similar to and different from the levels of SOM 

researchers have identified (Ulrich et al., 2014). Fifth, and finally, I discuss how a shift towards 

SOM can expand the work on teacher noticing (Jacobs et al., 2010; Mason, 1998, 2008).  

 Linking perception based perspective and first-order model in instruction. 

Perspectives on knowing and learning (detailed in Chapter I) include what teachers do in the 

classroom and also the way they think about their practice, motivations behind the methods they 

use, and the intentions that drive their instructional moves (Simon et al., 2000). Each perspective 

affords or constrains a teacher’s ability to create an SOM of her students. PBP is a belief that 

learning mathematics involves some sort of interaction or hands-on activity for students to “see” 

the mathematics. Therefore, mathematics is learned by promoting students’ active discovery of 

the mathematical concepts and usually concludes with an explanation of the understanding to 

make sure students “saw it”. With such a perspective, what the students see and discover is 

largely based on the teacher’s understanding of the mathematics and how the teacher’s FOM 

shapes how the mathematics should be seen and discovered. Data analysis I presented in this 

dissertation study support further relating PBP with FOM. 

Before shifting to SOM, teachers in this dissertation study held characteristics of PBP and 

used their FOM to create situations for students to actively discover the mathematics. In addition, 

it seemed the teachers’ FOM formed a lens through which they considered students’ success with 

the mathematics (the students are successful if they demonstrate using the mathematics the way a 

teacher sees it). For example, Charlie in AOP1 was using his FOM – mathematics he had learned 

through the larger project – to make sense of his students’ mathematics and instruct further 

learning. That is, it seemed his interpretation of students’ mathematics was based on observable 
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activities he experienced and wanted his students to experience the same way. Hence, when 

Monica struggled to identify �
�
 on the number line, Charlie guided her through the process of 

finding �
�
 and then measuring that amount from zero to mark the correct place. Of importance 

here, is that this PBP, which was coordinated with Charlie’s FOM, seemed to obstruct Charlie’s 

ability to create an SOM for Monica. This is significant, because it points in the direction of 

combining PBP with FOM. Specifically, FOM seems to be a part of the assimilatory schemes a 

teacher with PBP on knowing and learning uses to assess what students know and design and 

enact instruction. Thus, the shift towards SOM may provide a precursor to changing one’s stance 

on knowing and learning.  

Teachers’ change in perspective on learning and knowing. The four manifestations 

discussed in this dissertation study further explain how an individual teacher may transition into 

a Conception Based Perspective (Simon et al., 2000) and thus become able to utilize Student-

Adaptive Pedagogy (Steffe, 1990; Tzur, 2013). As stated in Chapter I, a teacher who holds a 

CBP and uses Student-Adaptive Pedagogy must have the ability to create SOMs of her students. 

If thinking about a shift from FOM alone to FOM coupled with SOM as precursors in changing 

perspectives, then these four manifestations may serve in teacher educators’ work to identify a 

potential beginning of a change in perspectives. That is, the four manifestations can guide 

researchers and teacher educators in having an initial idea of what may constitute moving from 

one perspective to another. The data in this study depict what a teacher goes through when 

shifting from FOM alone to FOM coupled with SOM.  

Facets of second-order models. SOM is a model of someone else’s mathematical 

reality, based on inferences an observer makes of a student’s mathematical understanding from 

observed behaviors (Steffe, 1995, 2000; Steffe & Thompson, 2000; Thompson, 2000; Ulrich et 
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al., 2014). The four manifestations distinguished in this dissertation study may serve as facets of 

this definition and overall SOM. This can, in turn, provide a platform for future work on 

elements of an SOM. Specifically, the four manifestations may provide insight into milestones 

on the path of moving from FOM alone to FOM coupled with SOM.  

Comparisons between a teacher’s and researcher’s shift towards SOM. To date, no 

research focused on how a teacher may shift towards practice in which FOM is coupled with 

SOM. In referring back to Chapter I, research does exist on different levels of an SOM 

researchers might have and use (Ulrich et al., 2014): Emerging SOM, Developed SOM, and 

Elaborated SOM. At the Emerging level, researchers have insight into a student’s mathematical 

thinking as separated from their own mathematical understanding, but are not yet able to make 

instructional adaptations as a result of the SOM – as it is still being constructed. At the 

Developed level, a researcher can anticipate and plan interactions with students based on the 

SOM. Finally, at the Elaborated level, the researcher is able to determine a viable SOM of the 

student and situate this with other SOMs in a class to create several epistemic subjects that drive 

design and enactment of mathematical instruction. Such epistemic subjects can then be used to 

anticipate and plan for instruction that serves to orient students’ assimilation and reorganization 

of what students know into new (for the student) mathematics.  

Based on this dissertation study, I can point out how a shift in teachers towards SOM as 

represented by the four manifestations may be similar to or differ from that of the researcher. 

This comparison between teachers and researchers is important because it may help to lead to 

future research on how mathematics educators can promote teachers’ development of SOM. 

Moreover, it applies the very notion of SOM to researchers of the need to distinguish their 

understanding of SOM from how teachers understand SOM (in a way, a researcher’s third order 
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model of the teachers’ evolving SOM). Following, I further discuss these similarities and 

differences.  

 Teachers in this study seemed to develop a separation between the way they thought 

about the mathematics and the way their students thought about it. For example, Charlie’s 

Juxtaposition of Thinking allowed him to shift towards inferring into the thinking of another 

student. As such, there seems to be no parallel between the manifestation of Juxtaposition of 

Thinking within teachers and any of the three levels for a researcher. Juxtaposition of Thinking 

involves an initial period in which the teacher begins to contrast her own FOM with a students’ 

actual mathematical activity. This contrast can then allow for a separation from the teachers’ 

own understanding of the mathematics and that of the student’s. At the Emerging, developed and 

Elaborated, levels it is assumed such a contrast exists on researchers’ part. That is, a researcher 

who falls into one of the three levels mentioned above, already established SOM as a way of 

thinking, even at Emerging Level.  

 Unlike the Juxtaposition of Thinking, the manifestation of Cogitation seems related to the 

first, Emerging level of SOM used by researchers. Teachers in this study shifted towards an 

increased ability to cogitate—contemplate and think deeply—about what their students’ 

mathematical activity might be. This Cogitation allowed for teachers to further separate the 

students’ thinking from their own thinking, and think more deeply about how students make 

sense of mathematics the teacher presents. Likewise, at the Emerging Level, researchers were 

able to initially describe the mathematics of students as separated from their own understanding 

albeit the SOM still being constructed or not quite accurate. Teachers who manifested Cogitation 

were beginning to describe the mathematics of students as separated/different from their own 

understanding as well as seemed to be still constructing or at times not quite sure regarding the 
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SOM they were describing. Therefore, the parallel between an Emerging Level for researchers 

and Cogitation for teachers is the initiation of describing the mathematics of a student outside of 

an FOM however the inference may not be accurate. Of course, a difference between teachers 

and researchers still seems important to note – teachers may be unable to articulate students’ 

mathematics that has already been depicted by researchers at the Developed and/or Elaborated 

levels. 

 As for the manifestation of Distinction, I point out an important similarity between 

teachers and researchers. Distinction is a manifestation of teachers’ ability to distinguish their 

students’ mathematical reasoning from student student and within a student while separating the 

model from the teachers’ own FOM. Distinction is likely what researchers may incorporate 

regularly at all three levels. Particularly in the Elaborated level, researchers use the Epistemic 

Subjects (Piaget, 1966) to group students and organize instruction based on inferences into 

students’ assimilatory schemes. Sam’s initial attempts to compare and group students seemed to 

be of similar nature. The difference being that, particularly at the Elaborated Level, the ability to 

create an epistemic subject is established and with Distinction this ability seems just to begin to 

surface. 

 Lastly, teachers in this dissertation study began to manifest Mindfulness, or an intention 

to facilitate instruction, which fostered students’ construction of the intended mathematics by 

building on the students’ distinct, available ways of reasoning. While evidence within the 

analysis showed teachers’ contemplation and intention of this and fell short of acting (in 

practice), this seems most in line with that of the researchers’ Developing and/or Elaborated 

levels. It is at the Developing Level where a researcher can anticipate, plan for, and enact 
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interactions with students. Mindfulness captured teachers’ contemplation about future and past 

student interactions with each of the participants of this study even though not yet enacting it.   

  Better understanding the similarities and differences between SOM in researchers and 

how teachers may develop SOM may help future researchers and teacher educators design 

professional development that can build on researchers’ experiences as a way to promote 

learning in teachers. Specifically, researchers and teacher educators can focus on creating 

learning opportunities for teachers’ shift towards SOM based on what the researchers themselves 

already have come to know (their FOM) and create SOMs of the teachers for the differences in 

what needs to be developed in the shift. Thus, the levels created by Ulrich et al. (2014) may 

serve as end goals of acquiring SOM and the four manifestations as potential milestones in how 

to get there.  

Assimilation: Beyond teacher noticing. For a teacher to shift towards an SOM requires 

that she infer into student’s assimilatory schemes and separate these from her own. Making such 

inferences into students’ mathematical reasoning necessitate the teacher’s noticing of what 

students are attending to (Jacobs et al., 2010; Mason, 1998, 2008). That is, teacher development 

of ability to notice what students are attending to seems like a good first start. However, as I 

explained in Chapter II, a shift to SOM requires the notion of assimilation.  

A teacher who makes a shift towards SOM, and manifests Juxtaposition of Thinking, 

Cogitation, Distinction, and Mindfulness can better understand why students are attending to 

what they do. As a result, the teacher can both notice students’ mathematical strategies and infer 

into conceptual roots of what students may attend to. An example of this is Charlie’s Cogitation. 

In order for him to make inferences into Craig’s thinking of 5 x �
�
, Charlie first had to notice 

Craig’s solutions for adding fractions with like denominators and whole number multiplication 
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problems. With such noticing, Charlie could then infer that Craig was applying what he knew 

about whole number multiplication and adding like denominator fractions to create an invented 

strategy for 5 x �
�
. In other words, teacher noticing seems to be necessary but insufficient for a 

shift towards SOM, as analyzed for each of the manifestations in Chapter IV. In this sense, this 

study can help expanding the work on teacher noticing by characterizing it as a basis for 

inferring into student mathematical activity, that is, into the conceptual roots of students’ 

attention. Next, I discuss implications of this study for practice. 

Implications for Practice 

With teachers’ shift towards SOM, transformation can be fostered in teaching practices, 

which may be better adapted to students’ available mathematics. In Chapter II of this study, I 

provided an image of a mathematics classroom with three groups of students: those above grade 

level, those at grade level, and those below grade level. In that image, I outlined how students at 

each of these levels would learn mathematics based on a teacher who lacked SOM. I now return 

to those three images while linking them to a teacher who has manifested Juxtaposition of 

Thinking, Cogitation, Distinction, and Mindfulness. In doing so, I hope to describe how a shift 

towards SOM in a teacher can better pinpoint affordances and constraints in students’ work and 

can, in turn, promote learning in all three of those groups.  

Juxtaposition of Thinking allows a teacher to separate her own mathematics from the 

student’s mathematics and thus begin to recognize differences in the way the student assimilates 

(thinks about and interprets) the learning experience. As a result of this separation, teachers can 

better pinpoint below, at, and above grade level students’ likely assimilation of instructional 

materials (tasks, manipulatives, numbers used, etc.), and begin to better understand what the 

student does know and is still struggling with. Specifically, this can help teachers recognize 
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exactly what students below grade level are struggling with, or when at grade level students 

know the math and are ready for more advanced mathematics, or determine how to advance 

above grade level students to higher-level understandings. For example, Charlie, when 

recognizing Monica’s struggle, seemed to begin to question his inferences into how she thought 

about the mathematics of a unit fraction as a source of that with which she seemed to struggle. 

This contemplation opened the door for Charlie to recognize there was a difference between his 

and Monica’s thinking of the mathematics. In turn, such a recognition may pave the way for 

adapting goals and activities for promoting Monica’s progress. 

Cogitation allows for a teacher to think more deeply about the inferences she has of her 

students’ mathematical reasoning. Such deeper thinking can allow a teacher to infer into the 

mental actions of the student and begin to predict possible ways to help the student reorganize 

the existing mathematics to more advanced concepts. This ability seems to be at the heart of 

differentiating instruction to below, at, or above grade level students so each of them is making 

progress. For example, Charlie’s inferences into Craig’s additive fraction knowledge and 

understanding for the move towards multiplication of a whole number by a fraction, could allow 

him to better design instruction targeting the inferred conceptions and promote more advanced 

mathematics. Cogitation can thus yield for the teacher a model that improves designing 

instruction targeted to what students do know, as well as with what they struggle. 

Distinction allows a teacher to focus on what students attend to and the conceptual roots 

of why that student attends to it, and thus be able to compare those inferences to the mathematics 

of others. Thus, the teacher can begin to create, in her mind, an epistemic subject – groups of 

students (below, at, or above grade levels) who are likely to assimilate tasks similarly. Sam, for 

example, began categorizing students as she began grouping Diana with Rachel. In making 
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distinctions, the teacher can design and enact learning experiences that accommodate all three 

levels because those distinctions underlie selecting goals and tasks for students’ learning to fit 

with what the teacher infers their existing understanding to be. As a result, distinction can 

support clarifying the model of students’ thinking for the teacher. 

Mindfulness allows a teacher to bring the inferences of students’ mathematical thinking 

into the design and enactment of instruction tailored to students’ conceptual level. As teachers 

begin to wonder and inherit a need to change their instruction, becoming mindful supports 

opportunities for students to bring what they know to the learning experience. Accordingly, all 

three levels of students benefit as opportunities are opened for them to bring and use what they 

know to initiate, sustain, and reflect on their goal-directed activities. This was illustrated with 

Sam, when she struggled with what to do next with Dominic. Sam admitted Dominic brought 

something she did not teach him. She seemed mindful of the need to further support his use of 

what he brought to advance his reasoning, but was unsure how to proceed. Her example of not 

knowing what to do is important in that it demonstrated she began to be mindful of the intent to 

use her understanding of the students’ existing mathematical realities (SOM) as a basis for 

instruction. If all students have this opportunity available to them, whichever level they are at, 

the teacher would provide opportunity for the student to indicate what she or he does know. 

Subsequently, the teacher could use such indications of knowledge to facilitate reorganization of 

what is known into more advanced mathematical concepts.  

In all, each of the four manifestations distinguished in this study can promote 

mathematics instructional practices for teachers and further lead to learning opportunities for 

students below, at, and above grade level. With each manifestation, a teacher further establishes 

a way to build an SOM of students’ thinking, which can assist her in understanding why the 
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students may be struggling or excelling. This can then promote learning targeted to each 

student’s assimilation at each level. Next, I will turn to suggestions for future research.  

Suggestions for Future Research 

 The findings of this study open new possibilities for future research when studying 

teachers’ shift towards SOM. In this section, I propose three potential future research endeavors 

based on the results of this study.  

First, while I distinguished four manifestations through this dissertation study, it is yet to 

be determined if each of the four manifestations will also occur in other teachers. Future research 

should involve inquiry into other teachers’ shift towards SOM and to what extent they are similar 

to the two participants of this study. In such research, the four manifestations I distinguished 

could serve as a starting point and guide the inquiry further. 

 Second, this study did not include analysis on the sequential (or not) nature of the four 

manifestations. The reason, this study and my distinction of the four manifestations being an 

initial work. Nevertheless, I make conjectures about possible progression. Specifically, I 

conjecture that Juxtaposition of Thinking would manifest first, as it underlies a teacher’s 

contrasting of FOM from students’ reasoning. The other three manifestations, Cogitation, 

Distinction, Mindfulness, are expected to follow Juxtaposition of Thinking. Examining such a 

conjecture would further our understanding of how the four manifestations might be linked to 

one another. 

 Third, and most important in my opinion, is to focus future research on how these 

manifestations emerge. Now that the four main manifestations are identified, research can be 

conducted as to how each manifestation may be developing, and thus also possibly be promoted 

in teachers. By promoting more shifts, a teacher can make use of FOM and SOM with 
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instruction, which can then potentially lead to their consistent practice of Student-Adaptive 

Pedagogy, and provide a basis for improving student learning and achievements in mathematics.  

Limitations  

 This dissertation study has two main limitations: exploratory versus explanatory research 

findings, and the preliminary nature of the findings. I briefly discuss each of them.   

 Prior research on development of second-order model. To date, no previous research 

focused on how teachers may shift towards SOMs. This dissertation study was the first to study 

this phenomenon. Thus, a limitation of this study was that there was no previous research and 

theorization on which to build. Accordingly, this research should be considered an exploratory 

work, as opposed to an explanatory model. That is, the study provides a possible starting point 

for future research designed to explain the phenomenon, including the developmental nature (if 

any) of the four manifestations.  

 Preliminary nature of the findings. As a result of this study being the first of this nature 

and exploratory the findings are preliminary and therefore can serve as a limitation. It is unclear 

if similar findings would be conclusive if researching other participants that were part of the 

larger study. Future work should include comparisons to determine if similar manifestations 

occurred within other teachers in the larger study.  

In Summary 

 My main focus in this study was twofold: (a) what changes can be noticed in elementary 

teachers’ explanations of their students’ mathematical activity as teachers shift away from 

relying on their FOM to teach mathematics, and (b) what may be manifested in their work while 

shifting towards differentiating between an FOM and students’ mathematical reasoning. My 

qualitative study, which included constant comparative analysis of observations and interviews 
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with two case study teachers, yielded four manifestations: Juxtaposition of Thinking, Cogitation, 

Distinction, and Mindfulness. I also found further links could be made between the constructs of 

Perception-Based Perspective (PBP) and First-Order Model (FOM), as well as potential future 

indications of how a teacher may shift towards a Conception-Based Perspective (CBP). In 

addition, I discussed how the four manifestations can relate between researchers’ ability to create 

SOM and teachers’ shift towards SOM. Based on this study, future work can focus on how a 

shift towards SOM may occur for elementary mathematics teachers, and on how such a shift may 

lead to CBP and, ultimately, to teachers’ shift toward a Student-Adaptive Pedagogy.  
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